129 resultados para Solon, ca. 630 B.C.-ca. 560 B.C.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An extensive, high-resolution, sedimentological-geochemical survey was done using geo-acoustics, XRF-core scans, ICP-AES, AMS 14C-dating and grain size analyses of sediments in 11 cores from the Gulf of Taranto, the southern Adriatic Sea, and the central Ionian Sea spanning the last 16 cal. ka BP. Comparable results were obtained for cores from the Gallipoli Shelf (eastern Gulf of Taranto), and the southern Adriatic Sea suggesting that the dominant provenance of Gallipoli Shelf sediments is from the western Adriatic mud belt. The 210Pb and 14C-dated high-accumulation-rate sediments permit a detailed reconstruction of climate variability over the last 16 cal. ka BP. Although, the Glacial-Interglacial transition is generally dry and stable these conditions are interrupted by two phases of increased detrital input during the Bølling-Allerød and the late Younger Dryas. The event during the Younger Dryas period is characterized by increased sediment inputs from southern Italian sources. This suggests that run-off was higher in southern- compared to northern Italy. At approximately ~ 7 cal. ka BP, increased detrital input from the Adriatic mud belt, related to sea level rise and the onset of deep water formation in the Adriatic Sea, is observed and is coincident with the end of sapropel S1 formation in the southern Adriatic Sea. During the mid-to-late Holocene we observed millennial-scale events of increased detrital input, e.g. during the Roman Humid Period, and of decreased detrital input, e.g., Medieval Warm Period. These dry/wet spells are consistent with variability in the North Atlantic Oscillation (NAO). A negative state of the NAO and thus a more advanced penetration of the westerlies into the central Mediterranean, that result in wet conditions in the research area concord with events of high detrital input e.g., during the Roman Humid Period. In contrast, a positive state of the NAO, resulting in dry conditions in the Mediterranean, dominated during events of rapid climate change such as the Medieval Warm Period and the Bronze Age.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A Cenozoic multi-species record of benthic foraminiferal calcite Sr/Ca has been produced and is corrected for interspecific offsets (typically less than 0.3 mmol/mol) and for the linear relationship between decreasing benthic foraminiferal Sr/Ca and increasing water depth. The water depth correction, determined from Holocene, Late Glacial Maximum and Eocene paleowater-depth transects, is ~0.1 mmol/mol/km. The corrected Cenozoic benthic foraminiferal Sr/Ca record ranges from 1.2 to 2.0 mmol/mol, and has been interpreted in terms of long-term changes in seawater Sr/Ca, enabling issues related to higher-resolution variability in Sr/Ca to be ignored. We estimate that seawater Sr/Ca was ~1.5 times modern values in the late Cretaceous, but declined rapidly into the Paleogene. Following a minimum in the Eocene, seawater Sr/Ca increased gradually through to the present day with a minimum superimposed on this trend centered in the late Miocene. By assuming scenarios for changing seawater calcium concentration, and using published carbonate accumulation rate data combined with suitable values for Sr partition coefficients into carbonates, the seawater Sr/Ca record is used to estimate global average river Sr fluxes. These fluxes are used in conjunction with the seawater strontium isotope curve and estimates of hydrothermal activity/tectonic outgassing to calculate changes in global average river 87Sr/86Sr through the Cenozoic. The absolute magnitude of Sr fluxes and isotopic compositions calculated in this way are subject to relatively large uncertainties. Nevertheless, our results suggest that river Sr flux increased from 35 Ma to the present day (roughly two-fold) accompanied by an overall increase in 87Sr/86Sr (by ~0 to 0.001). Between 75 and 35 Ma, river 87Sr/86Sr also increased (by ~0.001 to 0.002) but was accompanied by a decrease (two- to three-fold) in river Sr flux.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3 - 4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4 per mil lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, d44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal d44/40Ca and Sr/Ca proxy signals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Core-top samples from different ocean basins have been analyzed to refine our current understanding of the sensitivity of benthic foraminiferal calcite magnesium/calcium (Mg/Ca) to bottom water temperatures (BWT). Benthic foraminifera collected from Hawaii, Little Bahama Bank, Sea of Okhotsk, Gulf of California, NE Atlantic, Ceara Rise, Sierra Leone Rise, the Ontong Java Plateau, and the Southern Ocean covering a temperature range of 0.8 to 18°C were used to revise the Cibicidoides Mg/Ca-temperature calibration. The Mg/Ca-BWT relationship of three common Cibicidoides species is described by an exponential equation: Mg/Ca = 0.867 ± 0.049 exp (0.109 ± 0.007 * BWT) (stated errors are 95% CI). The temperature sensitivity is very similar to a previously published calibration. However, the revised calibration has a significantly different preexponential constant, resulting in different predicted absolute temperatures. We attribute this difference in the preexponential constant to an analytical issue of accuracy. Some genera, notably Uvigerina, show apparently lower temperature sensitivity than others, suggesting that the use of constant offsets to account for vital effects in Mg/Ca may not be appropriate. Downcore Mg/Ca reproducibility, as determined on replicate foraminiferal samples, is typically better than 0.1 mmol/mol (2 S.E.). Thus, considering the errors associated with the Cibicidoides calibration and the downcore reproducibility, BWT may be estimated to within ±1°C. Application of the revised core-top Mg/Ca-BWT data to Cenozoic foraminiferal Mg/Ca suggests that seawater Mg/Ca was not more than 35% lower than today in the ice-free ocean at 50 Ma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the South Pacific Convergence Zone (SPCZ), the variability in a sub-seasonally resolved microatoll Porites colony Sr/Ca record from Tonga and a previously published high-resolution record from Fiji are strongly influenced by sea surface temperature (SST) over the calibration period from 1981 to 2004 (R^2 = 0.67 - 0.68). However, the Sr/Ca-derived SST correlation to instrumental SST decreases back in time. The lower frequency secular trend (~1°C) and decadal-scale (~2 - 3°C) modes in Sr/Ca-derived SST are almost two times larger than that observed in instrumental SST. The coral Sr/Ca records suggest that local effects on SST generate larger amplitude variability than gridded SST products indicate. Reconstructed d18O of seawater (d18Osw) at these sites correlate with instrumental sea surface salinity (SSS; r = 0.64 - 0.67) but not local precipitation (r = -0.10 to - 0.22) demonstrating that the advection and mixing of different salinity water masses may be the predominant control on d18Osw in this region. The Sr/Ca records indicate SST warming over the last 100 years and appears to be related to the expansion of the western Pacific warm pool (WPWP) including an increasing rate of expansion in the last ~20 years. The reconstructed d18Osw over the last 100 years also shows surface water freshening across the SPCZ. The warming and freshening of the surface ocean in our study area suggests that the SPCZ has been shifting (expanding) southeast, possibly related to the southward shift and intensification of the South Pacific gyre over the last 50 years in response to strengthened westerly winds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample >18kyr BP).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present new Holocene century to millennial-scale proxies for the well-dated piston core MD99-2269 from Húnaflóadjúp on the North Iceland Shelf. The core is located in 365 mwd and lies close to the fluctuating boundary between Atlantic and Arctic/Polar waters. The proxies are: alkenone-based SST°C, and Mg/Ca SST°C estimates and stable d13C and d18O values on planktonic and benthic foraminifera. The data were converted to 60 yr equi-spaced time-series. Significant trends in the data were extracted using Singular Spectrum Analysis and these accounted for between 50% and 70% of the variance. A comparison between these data with previously published climate proxies from MD99-2269 was carried out on a data set which consisted of 14-variable data set covering the interval 400-9200 cal yr BP at 100 yr time steps. This analysis indicated that the 1st two PC axes accounted for 57% of the variability with high loadings clustering primarily into "nutrient" and "temperature" proxies. Clustering on the 100 yr time-series indicated major changes in environment at ~6350 and ~3450 cal yr BP, which define early, mid- and late Holocene climatic intervals. We argue that a pervasive freshwater cap during the early Holocene resulted in warm SST°s, a stratified water column, and a depleted nutrient supply. The loss of the freshwater layer in the mid-Holocene resulted in high carbonate production, and the late Holocene/neoglacial interval was marked by significantly more variable sea surface conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The compositional record of the AND-2A drillcore is examined using petrological, sedimentological, volcanological and geochemical analysis of clasts, sediments and pore waters. Preliminary investigations of basement clasts (granitoids and metasediments) indicate both local and distal sources corresponding to variable ice-volume and ice-flow directions. Low abundance of sedimentary clasts (e.g., arkose, litharenite) suggests reduced contributions from sedimentary covers while intraclasts (e.g., diamictite, conglomerate) attest to intrabasinal reworking. Volcanic material includes pyroclasts (e.g., pumice, scoria), sediments and lava. Primary and reworked tephra layers occur within the Early Miocene interval (1093 to 640 metres below sea floor mbsf). The compositions of volcanic clasts reveal a diversity of alkaline types derived from the McMurdo Volcanic Group. Finer-grained sediments (e.g., sandstone, siltstone) show increases in biogenic silica and volcanic glass from 230 to 780 mbsf and higher proportions of terrigenous material c. 350 to 750 mbsf and below 970 mbsf. Basement clast assemblages suggest a dominant provenance from the Skelton Glacier - Darwin Glacier area and from the Ferrar Glacier - Koettlitz Glacier area. Provenance of sand grains is consistent with clast sources. Thirteen Geochemical Units are established based on compositional trends derived from continuous XRF scanning. High values of Fe and Ti indicate terrigenous and volcanic sources, whereas high Ca values signify either biogenic or diagenic sources. Highly alkaline and saline pore waters were produced by chemical exchange with glass at moderately elevated temperatures.