186 resultados para Slopes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoliths (siliceous plant microfossils) have been recovered from Cenozoic sediments (c. 34 to 17 Ma) in the CRP-2/2A and CRP-3 drillholes cored off Cape Roberts, Victoria Land Basin, Antarctica. The phytolith assemblages are sparse, but well-preserved and dominated by spherical forms similar to those of modern trees or shrubs. Rare phytoliths comparable to modern grass forms are also present. However, due to the paucity of phytolith data, any interpretations made are necessarily tentative. The assemblages of CRP-2/2A and the upper c. 250 m of CRP-3 are interpreted as representing a predominantly woody vegetation, including Nothofagus and Libocedrus with local areas of grass in the more exposed locations. A cool climate is interpreted to have prevailed throughout both cores. However, beneath c. 250 metres below sea floor in CRP-3, the dominant woody vegetation is supplemented by pockets of Palmae, ?Proteaceae and 'warm' climate grasses. This association represents vegetation growth in sheltered, moist sites - possibly north-facing mid-slopes or the coastal fringe. It may also represent remnant vegetation that grew in moist, temperate conditions during the Middle to Late Eocene, previously interpreted from the Southern McMurdo Sound erratics and lower part of the CIROS-1 drillhole. The phytolith analysis compares well to the terrestrial palynomorph record from both cores and provides additional independent taxonomic and climatic interpretations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent sediments of the Stromboli Canyon sides features of mineral and grain size compositions, redox conditions, behavior of Fe, Mn, organic carbon, Mo, and W in an environment of active input of pyroclastic material are considered. Differences in conditions of sedimentation and early diagenesis in the east and west sides of the canyon depending on position of the prevailing direction of drift and steepness of the slopes, as well as types of differentiation of detrital material in sediments under conditions of permanent vibrations are specified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of pedogeomorphological, geochronological and paleobotanical investigations are presented covering the last ca. 4,000 years. The study sites are located in the heavily degraded Kyichu River catchment around Lhasa at 3,600-4,600 m a.s.l. Repeatedly, colluvial sediments have been recorded overlying paleosols. These deposits can be divided into i) coarse-grained sediments with a high proportion of stones and boulders originating from alluvial fans and debris flows, ii) matrix supported sediments with some stones and boulders originating from mudflows or combined colluvial processes such as hillwash plus rock fall, and iii) fine-grained sediments originating from hill wash. The IRSL multi-level dating of profile QUG 1 points to a short-time colluvial sedimentation between 1.0 ± 0.1 and 0.8 ± 0.1 ka. In contrast, dated paleosols of profile GAR 1 (7,908 ± 99 and 3,668 ± 57 BP) encompass a first colluvial episode. Here, the upper colluvial sedimentation took place during several periods between 2.6 ± 0.3 and 0.4 ± 0.1 ka. For the first time in Tibet, a systematic extraction, determination and dating of charcoals from buried paleosols was conducted. The charcoals confirm the Late Holocene presence of juniper forests or woodlands in a now treeless, barren environment. A pollen diagram from Lhasa shows a distinct decline of pollen of the Jumperus-type around 4,140 ± 50 BP, which is interpreted as indicating a clearing of forests on the adjacent slopes. It is assumed that the environmental changes from forests to desertic rangelands since ca. 4,000 BP have been at least reinforced by humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diverse and well-preserved planktonic foraminifers were recovered from six sites (834-839) drilled in the Lau Basin. Planktonic faunas from the Tongan Platform sites varied from those of the Lau Basin sites by being less well preserved (Site 840) to being very poorly preserved and very sparse (Site 841); at Site 841 most samples were barren. All sites penetrated a volcaniclastic sequence in which thick ash beds were encountered; foraminifer populations within the ash beds were often very small, making it difficult to obtain biostratigraphic data. No hiatuses were encountered in the upper Miocene to Pleistocene sections of the Lau Basin, but a possible break occurs at Site 840 on the Tongan Platform. Site 834 penetrated through a Quaternary-Pliocene sequence overlying basaltic basement, and topmost Miocene (Zone N17B) sediments interbedded within the volcanic sequence. Site 835 penetrated into the lower Pliocene (Zones N19 to N19-20). Site 836 penetrated the shortest section, with Zone N22 {Globorotalia (Truncorotalia) crassaformis hessi Subzone) directly overlying basalts. Site 837 penetrated into the basal part of Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone) overlying basalt. Site 838 failed to encounter basalts, with the oldest sediment being from Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone). Site 839, within the same basin as Site 838, located Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone) sediments directly overlying igneous basement. Site 840 penetrated into the upper Miocene Zone N17A without encountering any major unconformity. Site 841, studied mainly from core-catcher samples, penetrated a Quaternary to questionable upper Miocene sequence that was in fault contact with middle Miocene (Zones N8 to N9) sediments. For the Lau Basin sites, reworking was encountered only in Sites 834 and 835. Site 834 was drilled adjacent to the Lau Ridge, on which are developed numerous reef al and shallow-water environments, where erosional conditions could have been expected during sea-level lowstands. Site 835 was drilled in a narrow basin that has been remote from these erosional influences; slumping and erosion of material from the adjacent basin slopes appears to have been the source of the reworking. For the Tongan Platform sites, reworking was observed only in the lower part of the upper Miocene section at Site 841, where late Eocene larger foraminifers are present in conglomerates and grits. The presence of Globorotalia (Globorotalia) multicamerata and small specimens of Sphaeroidinellopsis spp. in the Pleistocene of Site 840 may indicate reworking, but this is not clear. Unit I, which marks a reduction in volcanic activity in the Lau Basin, ranges in age from the lower part of Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone) at Sites 834 and 835, to within Zone N22 (Globorotalia crassaformis hessi Subzone) at Sites 836 to 838, and within the upper part of Zone N22 (Bolliella praeadamsi Subzone) at Site 839. Units II and III are generally represented by thick to very thick ash beds, which generally contain low-diversity and often poorly preserved assemblages. Igneous sources seem to have remained important contributors of sediment up to the present day.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In July 1995 geological and biological studies in the axial zone of the northern part of the Mohn's Ridge (72°20'N) were carried out during Cruise 36 of R/V Akademik Mstislav Keldysh. Slopes of the neovolcanic zone, as well as a caldera on its crest were investigated with use of deep-sea manned submersibles Mir, geological and biological samples were also collected. Use of the Rosette sounding complex provided recognition of several major hydrothermal plumes. Bottom sediments of the marginal depression are enriched in metals characteristic for hydrothermal metalliferous sediments. Thus, a new unknown hydrothermal field was found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceanographically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m × 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45-70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5-7 km width, build an approx. 40-70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than 2000 turbidite, debris-flow, and slump deposits recovered at Site 823 record the history of the Queensland Trough since the middle Miocene and provide new insights about turbidites, debris flow, and slump deposits (herein termed gravity deposits). Changes in the composition and nature of gravity deposits through time can be related to tectonic movements, fluctuations in eustatic sea level, and sedimentological factors. The Queensland Trough is a long, relatively narrow, structural depression that formed as a result of Cretaceous to Tertiary rifting of the northeastern Australia continental margin. Thus, tectonics established the geometry of this marginal basin, and its steep slopes set the stage for repeated slope failures. Seismic data indicate that renewed faulting, subsidence, and associated tectonic tilting occurred during the early late Miocene (continuing into the early Pliocene), resulting in unstable slopes that were prone to slope failures and to generation of gravity deposits. Tectonic subsidence, together with a second-order eustatic highstand, resulted in platform drowning during the late Miocene. The composition of turbidites reflects their origin and provides insights about the nature of sedimentation on adjacent shelf areas. During relative highstands and times of platform drowning, planktonic foraminifers were reworked from slopes and/or drowned shelves and were redeposited in turbidites. During relative lowstands, quartz and other terrigenous sediment was shed into the basin. Quartzose turbidites and clay-rich hemipelagic muds also can record increased supply of terrigenous sediment from mainland Australia. Limestone fragments were eroded from carbonate platforms until the drowned platforms were buried under hemipelagic sediments following the late Miocene drowning event. Bioclastic grains and neritic foraminifers were reworked from neritic shelves during relative lowstands. During the late Pliocene (2.6 Ma), the increased abundance of bioclasts and quartz in turbidites signaled the shallowing and rejuvenation of the northeastern Australia continental shelf. However, a one-for-one relationship cannot be recognized between eustatic sea-level fluctuations and any single sedimentologic parameter. Perhaps, tectonism and sedimentological factors along the Queensland Trough played an equally important role in generating gravity deposits. Turbidites and other gravity deposits (such as those at Site 823) do not necessarily represent submarine fan deposits, particularly if they are composed of hemipelagic sediments reworked from drowned platforms and slopes. When shelves are drowned and terrigenous sediment is not directly supplied by nearby rivers/point sources, muddy terrigenous sediments blanket the entire slope and basin, rather than forming localized fans. Slope failures affect the entire slope, rather than localized submarine canyons. Slopes may become destabilized as a result of tectonic activity, inherent sediment weaknesses, and/or during relative sea-level lowstands. For this reason, sediment deposits in this setting reflect tectonic and eustatic events that caused slope instabilities, rather than migration of different submarine fan facies.