51 resultados para Senary Sector of Agriculture
Resumo:
Two cores, Site 1089 (ODP Leg 177) and PS2821-1, recovered from the same location (40°56'S; 9°54'E) at the Subtropical Front (STF) in the Atlantic Sector of the Southern Ocean, provide a high-resolution climatic record, with an average temporal resolution of less than 600 yr. A multi-proxy approach was used to produce an age model for Core PS2821-1, and to correlate the two cores. Both cores document the last climatic cycle, from Marine Isotopic Stage 6 (MIS 6, ca. 160 kyr BP, ka) to present. Summer sea-surface temperatures (SSSTs) have been estimated, with a standard error of ca. +/-1.16°C, for the down core record by using Q-mode factor analysis (Imbrie and Kipp method). The paleotemperatures show a 7°C warming at Termination II (last interglacial, transition from MIS 6 to MIS 5). This transition from glacial to interglacial paleotemperatures (with maximum temperatures ca. 3°C warmer than present at the core location) occurs earlier than the corresponding shift in delta18O values for benthic foraminifera from the same core; this suggests a lead of Southern Ocean paleotemperature changes compared to the global ice-volume changes, as indicated by the benthic isotopic record. The climatic evolution of the record continues with a progressive temperature deterioration towards MIS 2. High-frequency, millennial-scale climatic instability has been documented for MIS 3 and part of MIS 4, with sudden temperature variations of almost the same magnitude as those observed at the transitions between glacial and interglacial times. These changes occur during the same time interval as the Dansgaard-Oeschger cycles recognized in the delta18Oice record of the GRIP and GISP ice cores from Greenland, and seem to be connected to rapid changes in the STF position in relation to the core location. Sudden cooling episodes ('Younger Dryas (YD)-type' and 'Antarctic Cold Reversal (ACR)-type' of events) have been recognized for both Termination I (ACR-I and YD-I events) and II (ACR-II and YD-II events), and imply that our core is located in an optimal position in order to record events triggered by phenomena occurring in both hemispheres. Spectral analysis of our SSST record displays strong analogies, particularly for high, sub-orbital frequencies, to equivalent records from Vostok (Antarctica) and from the Subtropical North Atlantic ocean. This implies that the climatic variability of widely separated areas (the Antarctic continent, the Subtropical North Atlantic, and the Subantarctic South Atlantic) can be strongly coupled and co-varying at millennial time scales (a few to 10-ka periods), and eventually induced by the same triggering mechanisms. Climatic variability has also been documented for supposedly warm and stable interglacial intervals (MIS 1 and 5), with several cold events which can be correlated to other Southern Ocean and North Atlantic sediment records.
Resumo:
We present time series of export productivity proxy data including 230Thex-normalized deposition rates (rain rates) of 10Be, dissolution-corrected biogenic Ba, and biogenic opal as well as authigenic U concentrations which are complemented by rain rates of total (detrital) Fe and sea ice indicating diatom abundances from five sediment cores across the Atlantic sector of the Southern Ocean covering the past 150,000 years. The results suggest that 10Be rain rates and authigenic U concentration cannot serve as quantitative paleoproductivity proxies because they have also been influenced by detrital particle fluxes in the case of 10Be and bulk sedimentation rates (sediment focussing) and deep water oxygenation in the case of U. The combined results of the remaining productivity proxies of this study (rain rates of biogenic opal and biogenic Ba in those sections without authigenic U) and other previously published proxy data from the Southern Ocean (231Pa/230Th and nitrogen isotopes) suggest that a combination of sea ice cover, shallow remineralization depth, and stratification of the glacial water column south of the present position of the Antarctic Polar Front and possibly Fe fertilization north of it have been the main controlling factors of export paleoproductivity in the Southern Ocean over the last 150,000 years. An overall glacial increase of export paleoproductivity is not supported by the data, implying that bioproductivity variations in the Southern Ocean are unlikely to have contributed to the major glacial atmospheric CO2 drawdown observed in ice cores.
Resumo:
Late Quaternary summer sea surface temperatures (SSTs) have been derived from radiolarian assemblages in the East Atlantic sector of the Southern Ocean. In the subantarctic and the polar frontal zone, glacial SSTs (oxygen isotope stages 2, 4, 6, and 8) were 3°-5°C cooler than today, indicating northward displacements of the isotherms about 2°-4° of latitudes. During interglacials, SSTs almost reached modern levels (oxygen isotope stages 7 and 9) or exceeded them by 2°-3°C (oxygen isotope stages 1 and 5.5). In the subantarctic Atlantic Ocean, changes in SST and calcium carbonate content of the sediment precede variations in global ice volume in the range of the main Milankovitch frequencies. Comparisons with the timing of North Atlantic Deep Water (NADW) proxy records suggests that this early response in the subantarctic Atlantic Ocean is not triggered by the flux of NADW to the Southern Ocean.
Resumo:
In spite of the important role played by the Southern Ocean in global climate, the few existing paleoceanographic records in the east Pacific sector do not extend beyond one glacial-interglacial cycle, hindering circumpolar comparison of past sea surface temperature (SST) evolution in the Southern Ocean. Here we present three alkenone-based Pleistocene SST records from the subantarctic and subtropical Pacific. We use a regional core top calibration data set to constrain the choice of calibrations for paleo SST estimation. Our core top data confirm that the alkenone-based UK37 and UK'37 values correlate linearly with the SST, in a similar fashion as the most commonly used laboratory culture-based calibrations even at low temperatures (down to ~1°C), rendering these calibrations appropriate for application in the subantarctic Pacific. However, these alkenone indices yield diverging temporal trends in the Pleistocene SST records. On the basis of the better agreement with d18O records and other SST records in the subantarctic Southern Ocean, we propose that the UK37 is a better index for SST reconstruction in this region than the more commonly used UK'37 index. The UK37-derived SST records suggest glacial cooling of ~8°C and ~4°C in the subantarctic and subtropical Pacific, respectively. Such extent of subantarctic glacial cooling is comparable to that in other sectors of the Southern Ocean, indicating a uniform circumpolar cooling during the Pleistocene. Furthermore, our SST records also imply massive equatorward migrations of the Antarctic Circumpolar Current (ACC) frontal systems and an enhanced transport of ACC water to lower latitudes during glacials by the Peru-Chile Current.
Resumo:
Quantitative data on radiolarian assemblages from the Benguela upwelling at 17-25°S were obtained from analysis of 18 bottom sediment samples. The maximum abundance of Radiolaria (20000-40000 individuals per 1 g of sediment) was determined in sediments of the open ocean at depth 2000-4100 m. Species of tropical zones dominate in the assemblages; however content of species of subpolar and moderate zones reaches considerable values. In shelf sediments at depth 60-160 m abundance of Radiolaria (up to 5000 ind./g) is greater than in sediments of the continental slope. In shelf assemblages species of subpolar and temperate zones dominate. A characteristic feature of the shelf upwelling assemblages of Radiolaria is expressed by predominance of Lithomelissa setosa (Joerg.) (up to 50-80% at 23-25°S). L. setosa is a common representative of radiolarian assemblages of subpolar and temperate regions of the World Ocean. It is presumably regarded as an eurybiont species. Probably, it propagates with subantarctic intermediate water masses from the circumantarctic area to the Benguela upwelling region where there are favorable living conditions: subsurface water temperature is not higher than 10°C and there are high concentrations of nutrients.
Resumo:
We identify geochemical features of sedimentary organic matter in various morphostructural zones of the Antarctic sector of the Atlantic. We present background geochemical organic parameters for shelf and deep-sea sediments from the Weddell and Scotia Seas and the Bransfield Strait. Geochemical organic parameters are good indicators of environmental and facial variations in sediments and could be used for environmental monitoring of the World Ocean.
Resumo:
Radiolarian-based paleoceanographic reconstructions generally use the abundance of selected radiolarian species. However, the recent focus on the opal flux and the development of isotope measurements in biogenic opal and the organic matter embedded in it demands a better knowledge of the origin of the opal. We present here an estimation of the opal content of the skeleton of 63 radiolarian species from two sites in the Southern Ocean. The skeletons are modelled as associations of simple geometrical shapes, and the volume thus obtained is combined with opal density to obtain the amount of opal. These data are, thus, used to determine the most important opal carriers in the radiolarian assemblage in both cores.
Resumo:
Diatom assemblages from ODP Leg 177 sites 1093, 1094 and core PS2089-2, from the present Antarctic sea ice free zone and close to the Polar Front, were analyzed in order to reconstruct the climate development around the Mid-Brunhes Event 400 000 yr ago, as reflected by summer sea surface temperature (SSST) and sea ice distribution. Dense sample spacing allows a mean temporal resolution during Marine Isotope Stage (MIS) 11 (423-362 ka) of 300-400 yr. SSST values were estimated from diatom assemblages using a transfer function technique. The distribution pattern of sea ice diatoms indicates that the present-day ice free Antarctic Zone was seasonally covered by sea ice during the cold MIS 12 and MIS 10. These glacial periods are characterized by sea ice fluctuations with a periodicity of 3 and 1.85 kyr, suggesting the occurrence of Dansgaard-Oeschger-style millennial-scale oscillations in the Atlantic sector of the Southern Ocean during the glacial stages MIS 12 and MIS 10. Termination V (MIS 12/11) is characterized by a distinct temperature increase of 4-6°C, intersected especially at the southern site 1094 and core PS2089-2 by two distinct cooling events reminiscent of the Younger Dryas, which are associated with a northward shift of the winter sea ice edge in the Antarctic Zone. The SSST record is characterized by distinct temperature intervals bounded by stepwise, rapid changes. Maximum temperatures were reached during Termination V and the early MIS 11, exceeding modern values by 2°C over a period of 8 kyr. This pattern indicates a very early response of the Southern Ocean to global climate on Milankovitch-driven climate variability. The SSST optimum is marked by millennial-scale temperature oscillations with an amplitude of ca. 1°C and periodicities of ca. 1.85 and 1.47 kyr, probably reflecting changes in the ocean circulation system. The SSSTs during the MIS 11 temperature optimum do not exceed values obtained from other interglacial optima such as the early periods of MIS 5 or MIS 1 from the Antarctic Zone. However, the total duration of the warmest period was distinctly longer than observed from other interglacials. The comparison of the South Atlantic climate record with a high-resolution record from ODP Leg 162, site 980from the North Atlantic shows a strong conformity in the climate development during the studied time interval.