43 resultados para Scale [ca. 1:830,000].None
Resumo:
The geological overview map was compiled from 15 geological maps (1 : 25,000) and is based on Jacobs et al. 1996. The topographic basemaps were adapted from unpublished 1:250,000 provisional topographic maps, Institut f. Angewandte Geodäsie, Frankfurt, 1983. Part of the contour lines are from Radarsat (Liu et al. 2001).
Resumo:
The 1 : 1,500,000 AWI Bathymetric Chart of the Gakkel Ridge (AWI BCGR) has been developed from multibeam data measured during the Arctic Mid-Ocean Ridge Expedition in 2001 (AMORE 2001, ARK-XVII/2). This expedition was conducted to investigate the Gakkel Ridge in the Arctic Ocean and was carried out by the icebreaking research vessels RV Polarstern and USCGC Healy. Polarstern is equipped with the multibeam sonar system Hydrosweep DS-2, whereas Healy carries Seabeam 2112. During the expedition an area of 8890 km length and 18 - 46 km width, situated between 82°N/8°W and 87°N/75°E, was surveyed simultaneously by both vessels. Water depths ranged from 566 to 5673 meters. Dense sea ice cover derogated the sonar measurements and decreased data quality. Data errors were corrected in an extensive post-processing. The data of two different sonar systems had to be consolidated in order to derive a high resolution bathymetry of the Gakkel Ridge. Final result was a digital terrain model (DTM) with a grid spacing of 100 meters, which was utilized for generating the map series AWI Bathymetric Chart of the Gakkel Ridge, consisting of ten map sheets.
Resumo:
The extent of snow cover at the end of the ablation season on glaciers in the Tyrolean Alps in 1972 and 1973 was determined from Landsat-1 Multispectral Scanner (MSS) images. For snovv mapping the MSS-images with a ground resolution of 80 meters were enlarged to a scale of 1: 100.000 by photographic methods. Different appearance of snow cover in the 4 MSS-channels is discussed in connection with ground truth control. The accuracy of snow and ice mapping from Landsat images was checked on 15 glaciers with an area from 1 to 10 km2 by aerial photography and/or ground truth control. These comparisons imply the usefulness of Landsat images for snow mapping on glaciers of a few square kilometers. The altitude of the equilibrium line was determined from Landsat images for 53 glaciers in the Tyrolean Alps. The regional differences in the equilibrium line altitude correspond to the regional precipitation patterns. The equilibrium line was identical with the snow line at the end of the budget year 1971/1972; therefore it was possible to determine the equilibrium line from satellite images. For 1968/69 the equilibrium line was mapped from aerial photographs for several glaciers. In 1972/73 mass balance was strongly negative and the equilibrimn line was within the firn area of the glaciers. Therefore it was not possible to distinguish between accumulation and ablation areas from the Landsat images of September 1973; however, snow and ice areas could be olearly differentiated. The ratios of accumulation area 01' snow area to the total area of the glaciers were determineel from satellite images and aerial photography separately for aelvancing anel for retreating glaciers and were relateel to the mass balance. In the budget years 1968/69 and 1972/73 with negative mass balance the accumulation area ratios of the advancing glacien; were olearly different from the ratios of the retreating glaciers, in 1971/72 with positive 01' balanced mass budget the differences between advancing and retreating glaciers were not significant.