555 resultados para STRONTIUM
Resumo:
We report 261 strontium isotopic analyses of well-preserved planktonic foraminifers from three Deep Sea Drilling Project Sites (519, 588, and 607). These samples cover the period from 24 Ma to present with an average of approximately one sample per 100 ka. The combination of high sample density and uniformity of analytical procedures has produced a well-defined record of changes in the 87Sr/86Sr of seawater during the Neogene. The record can be viewed as a series of essentially linear segments with slopes ranging from as high as 0.00006/m.y. to as low as 0/m.y. The times associated with major inflections in the curve do not appear to correspond to simple geologic phenomena such as eustatic cycles, but are probably controlled by a combination of tectonic and climatic factors that influenced the abundance and isotopic composition of terrestrial strontium input to the oceans. The strontium isotopic data are consistent with a progressive increase in the chemical weathering rates of the continents during the Neogene, probably related to repeated glaciations, increased exposure of continents by lowered sea level, and increased continental relief resulting from high rates of tectonic uplift.
Resumo:
The Maastrichtian and Danian intervals of Ocean Drilling Program (ODP) Hole 738C contain numerous microfossils above the level of their putative extinction, suggesting either (1) persistence of local communities long after species turnover occurred across the rest of the globe or (2) large-scale reworking. These interpretations have very different paleoenvironmental implications, but discriminating between them has proved difficult. To test the competing hypotheses, we measured the 87Sr/86Sr ratios of taxon-specific separates from a number of samples and compared these values both to each other and to expected seawater values at the time of deposition. Our results indicate extensive and pervasive reworking throughout Maastrichtian and lower Danian strata in ODP Hole 738C. We estimate that up to 30% of the mass of foraminifers in any sample can be contributed by individuals that have been reworked.
Resumo:
Seventeen whole-rock samples, generally taken at 25- to 50-meter intervals from 5 to 560 meters sub-basement in Deep Sea Drilling Project Hole 504B, were analyzed for 87Sr/86Sr ratios, and rubidium and strontium concentrations. Ten of these samples also were analyzed for Pb-isotope composition. Strontium-isotope ratios for eight samples from the upper 260 meters of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the interval 330 to 560 meters, five samples have a restricted range of 0.70259 to 0.70279, with a mean of 0.70266, almost identical to the average value of fresh mid-ocean-ridge basalts. In the interval 260 to 330 meters, approximately intermediate strontium- isotope ratios are found. The higher 87Sr/86Sr ratios in the upper part of the hole can be interpreted in terms of strontium-isotope alteration during basalt-sea-water interaction. Relative to average fresh mid-ocean ridge basalts, the upper 260 meters of basalts are enriched by an average of about 9% in sea-water strontium 87Sr/86Sr = 0.7091). This Sr presumably is located in the smectites, which, as the main secondary minerals throughout the hole, replace olivine and matrix glass and locally fill vesicles (analyzed samples contained no veins). The strontium-isotope data strongly suggest that the integrated flux of sea water through the upper part of the Hole 504B crust has been greater than through the lower part. This is also suggested by (1) the common occurrence of Feoxide- hydroxide minerals as alteration products above 270 meters, but their near absence below 320 meters, (2) the presence of vein calcite above 320 meters, but its near absence below this level, and (3) the occurrence of vein pyrite only below a depth of 270 meters. Sea-water circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below 230 meters sub-basement. Although sufficient sea water was present within the lower part of the hole to produce smectitic alteration products, the overall water /rock ratio was low enough to prevent significant modification of strontium-isotope ratios. Lead-isotope ratios of Hole 504B basalts form approximately linear arrays in plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb. The arrays are similar to those reported for basalts from other mid-ocean ridges. There is no trend in Hole 504B lead-isotope ratios with vertical position in the basement. The arrays indicate that the lead-isotope composition of the upper mantle from which the Hole 504B basaltic melts were derived was inhomogeneous.
Resumo:
Vertical structure of the strontium-90 concentration field and its relation to hydrology of waters are described on the basis of investigations in the Caribbean Sea during Cruises 6 and 7 of R/V Akademik Vernadsky (1972-1973). Vertical velocity and the coefficient of vertical turbulent diffusion are calculated for the eastern Caribbean Sea from strontium-90 concentration and salinity data.
Resumo:
A downhole decrease in 18O, Mg(2+) and K+, an increase in Ca(2+) and a low 87Sr/86Sr ratio of 0.7067 in the pore fluids of DSDP site 323 were caused principally by the alteration of volcanic material. These chemical and isotopic patterns were produced by the alteration, in order of decreasing importance of: a 60-m thick basal layer of volcanic ash; the underlying basalts; and igneous components in the 640-m thick upper sequence composed largely of terrigenous material. A significant portion of the alteration of the ash in the basal sequence must have occurred before the deposition of the upper sediments, perhaps under the influence of advecting solutions. The rest of the alteration occurred during the deposition of the thick upper sediments. Mass balance considerations and the low d18O values of most of the alteration products suggest that much of the later alteration occurred progressively over the last 13 Myr. The principal alteration products were smectite, potassium feldspar, clinoptilolite and calcite.
Resumo:
Sr and Nd isotopic compositions have been measured on the lithic fraction of last climatic cycle sediments from the North Atlantic (~40°N/~60°N), in order to identify the origins of the particles. From the reconstruction of their transport pathways, we deduce the mechanisms that explain their distributions. The main source regions are the Canadian shield (mostly the area of Baffin Bay and western Greenland), the Scandinavian shield, the European region (British Isles and Bay of Biscay), and Iceland. We observe a significant glacial/interglacial contrast, characterized by a dominant Icelandic input via near-bottom transport by North Atlantic Deep Water (NADW) during the interglacials and a largely continent-derived contribution of surface-transported, ice-rafted detritus (IRD) during the glacial period. During the last glacial period, the Heinrich events (abrupt, massive discharges of IRD) originated not only from the Laurentide ice sheet as heretofore envisioned but also from other sources. Three other major North Atlantic ice sheets (Fennoscandian, British Isles, and Icelandic) probably surged simultaneously, discharging ice and IRD into the North Atlantic. As opposed to theories implying a unique, Laurentide origin [Gwiazda et al., 1996 doi:10.1029/95PA03135] driven by an internal mechanism [MacAyeal, 1993 doi:10.1029/93PA02200], we confirm that the Icelandic and the Fennoscandian ice sheets also surged as recently proposed by other authors, and we here also distinguish a possible detrital contribution from the British Isles ice sheet. This pan-North Atlantic phenomenon thus requires a common regional, external forcing.
Resumo:
The dataset consists of 87Sr/86Sr isotope ratios of plant samples and soil leachates covering the major geologic regions of France. In addition to the isotope data it provides the spatial context for each sample, including background geology, field observations and soil descriptions. The dataset can be used to create Sr isoscapes for France, which can be applied in a wide range of fields including archaeology, ecology, soil, food, and forensic sciences.
Resumo:
Seawater 87Sr/86Sr values increase abruptly by 28 * 10**-6 across the Cretaceous/Tertiary boundary (KTB). This small, but rapid shift is superimposed on the larger scale structure of the seawater Sr isotope curve. The time scale of radiogenic Sr addition appears to be too rapid to reconcile with sources associated with volcanism, and we show that the amount of Sr required to produce even this small increase is too large to be derived from: (1) a KT bolide of the size constrained by the Ir anomaly, (2) continental crust ejecta from the impact of such a bolide, (3) soot from global wildfires initiated by an impact, or (4) any combination of these sources. The probable source of the radiogenic Sr is enhanced continental weathering, but the high rate of increase appears to rule out processes such as sea level regression, glaciation or tectonism. A plausible mechanism for rapid addition of radiogenic Sr to the oceans is enhanced weathering associated with globally distributed acid rain (pH c. 1) which is a proposed by-product of a bolide impact (Prinn and Fegley, 1987, doi:10.1016/0012-821X(87)90046-X).
Resumo:
The isotopic (dD, d18O, d13C, and 87Sr/86Sr) and geochemical characteristics of hydrothermal solutions from the Mid-Atlantic Ridge and the material of brucite-carbonate chimneys at the Lost City hydrothermal field at 30°N, MAR, were examined to assay the role of the major factors controlling the genesis of the fluid and hydrothermal chimneys of the Lost City field. The values of dD and d18O in fluid samples indicates that solutions at the Lost City field were produced during the serpentinization of basement ultramafic rocks at temperatures higher than 200°C and at relatively low fluid/rock ratios (<1). The active role of serpentinization processes in the genesis of the Lost City fluid also follows from the results of the electron-microscopic studying of the material of hydrothermal chimneys at this field. The isotopic (d18O, d13C, and 87Sr/86Sr) and geochemical (Sr/Ca and REE) signatures indicate that, before its submarine discharging at the Lost City field, the fluid filtered through already cold altered outer zones of the Atlantis Massif and cooled via conductive heat loss. During this stage, the fluid could partly dissolve previously deposited carbonates in veins cutting serpentinite at the upper levels of the Atlantis Massif and the carbonate cement of sedimentary breccias underlying the hydrothermal chimneys. Because of this, the age of modern hydrothermal activity at the Lost City field can be much younger than 25 ka.
Resumo:
Subduction of the Pacific plate beneath the Mariana forearc releases fluids to the overlying mantle wedge that ascend, producing serpentinite "mud" that discharges on the ocean floor. As part of Leg 195 of the Ocean Drilling Program cores were obtained from drill-holes into the mud volcanoes. We report the isotopic composition of Sr in water squeezed from intervals of the cores, in the serpentinite mud, in leaches of the serpentinite mud, and in entrained small harzburgitic clasts. Except in the upper few meters below the seawater-mud interface, where pore water approaches seawater Sr concentration and isotopic ratio, Sr concentration and isotopic composition remain constant at 3-6 µmol/kg and ~0.7054. Because the elemental chemistry of the pore water is unlike seawater, this isotopic composition reflects fluids derived from the subducted slab, probably modified by reaction with mantle material during ascent. Higher Sr isotopic ratios, up to 0.7087, - but not with higher Sr concentrations in pore water - occur superimposed on an advection profile at 13-16 mbsf surrounding a thin layer of foraminiferal sand. Since the upward seepage velocity of slab fluids in the mud volcano vents is a few cm/yr, exchange of Sr between these carbonates and the rising fluids must have occurred within a maximum of a few hundred years, essentially instantaneously given the millions, or tens of millions, of years the mud volcanoes have been in existence. In contrast, the strontium isotopic compositions of leached serpentinite mud, and of small harzburgite clasts entrained in the mud, are always significantly greater than that of the pore water. In small harzburgite clasts the ratio reaches 0.7088, almost as high as the seawater value of 0.7092 and much higher than the value of typical mantle-derived strontium of ~0.704. The serpentinite muds and harzburgite clasts clearly equilibrated with seawater Sr when they were initially deposited at the surface of the seamount, but following burial they have not fully equilibrated with strontium in the pore water now discharging through the vents. These variations in the strontium isotopic composition of solids and pore waters are more consistent with episodic expulsion of fluids in the subduction zone than steady state flow. Whereas strontium in carbonates equilibrates isotopically within a few hundred years, strontium in buried harzburgite clasts does not equilibrate in the same time, assuming steady state rates of upward fluid flow. By inference, the harzburgite clasts and associated serpentinite mud must have been near the seafloor, unburied, for a yet undetermined but much longer period of time to have equilibrated from ~0.704 to 0.709 prior to subsequent burial. It may be possible to characterize at least the periodicity of fluid release in the mud volcano setting by investigating the zonation of strontium isotopic composition of hartzburgite clasts throughout the 60-meter deep composite cores.