97 resultados para SPATIO-TEMPORAL DISTRIBUTION
Resumo:
Globally, areas categorically known to be free of human visitation are rare, but still exist in Antarctica. Such areas may be among the most pristine locations remaining on Earth and, therefore, be valuable as baselines for future comparisons with localities impacted by human activities, and as sites preserved for scientific research using increasingly sophisticated future technologies. Nevertheless, unvisited areas are becoming increasingly rare as the human footprint expands in Antarctica. Therefore, an understanding of historical and contemporary levels of visitation at locations across Antarctica is essential to a) estimate likely cumulative environmental impact, b) identify regions that may have been impacted by non-native species introductions, and c) inform the future designation of protected areas under the Antarctic Treaty System. Currently, records of Antarctic tourist visits exist, but little detailed information is readily available on the spatial and temporal distribution of national governmental programme activities in Antarctica. Here we describe methods to fulfil this need. Using information within field reports and archive and science databases pertaining to the activities of the United Kingdom as an illustration, we describe the history and trends in its operational footprint in the Antarctic Peninsula since c. 1944. Based on this illustration, we suggest that these methodologies could be applied productively more generally.
Resumo:
In the framework of the European Project for Ice Coring in Antarctica (EPICA), a comprehensive glaciological pre-site survey has been carried out on Amundsenisen, Dronning Maud Land, East Antarctica, in the past decade. Within this survey, four intermediate-depth ice cores and 13 snow pits were analyzed for their ionic composition and interpreted with respect to the spatial and temporal variability of volcanic sulphate deposition. The comparison of the non-sea-salt (nss)-sulphate peaks that are related to the well-known eruptions of Pinatubo and Cerro Hudson in AD 1991 revealed sulphate depositions of comparable size (15.8 ± 3.4 kg/km**2) in 11 snow pits. There is a tendency to higher annual concentrations for smaller snow-accumulation rates. The combination of seasonal sodium and annually resolved nss-sulphate records allowed the establishment of a time-scale derived by annual-layer counting over the last 2000 years and thus a detailed chronology of annual volcanic sulphate deposition. Using a robust outlier detection algorithm, 49 volcanic eruptions were identified between AD 165 and 1997. The dating uncertainty is ±3 years between AD 1997 and 1601, around ±5 years between AD 1601 and 1257, and increasing to ±24 years at AD 165, improving the accuracy of the volcanic chronology during the penultimate millennium considerably.
Resumo:
Bromoform (CHBr3) is one important precursor of atmospheric reactive bromine species that are involved in ozone depletion in the troposphere and stratosphere. In the open ocean bromoform production is linked to phytoplankton that contains the enzyme bromoperoxidase. Coastal sources of bromoform are higher than open ocean sources. However, open ocean emissions are important because the transfer of tracers into higher altitude in the air, i.e. into the ozone layer, strongly depends on the location of emissions. For example, emissions in the tropics are more rapidly transported into the upper atmosphere than emissions from higher latitudes. Global spatio-temporal features of bromoform emissions are poorly constrained. Here, a global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) is used to simulate bromoform cycling in the ocean and emissions into the atmosphere using recently published data of global atmospheric concentrations (Ziska et al., 2013) as upper boundary conditions. Our simulated surface concentrations of CHBr3 match the observations well. Simulated global annual emissions based on monthly mean model output are lower than previous estimates, including the estimate by Ziska et al. (2013), because the gas exchange reverses when less bromoform is produced in non-blooming seasons. This is the case for higher latitudes, i.e. the polar regions and northern North Atlantic. Further model experiments show that future model studies may need to distinguish different bromoform-producing phytoplankton species and reveal that the transport of CHBr3 from the coast considerably alters open ocean bromoform concentrations, in particular in the northern sub-polar and polar regions.
Resumo:
The Denmark Strait Overflow (DSO) today compensates for the northward flowing Norwegian and Irminger branches of the North Atlantic Current that drive the Nordic heat pump. During the Last Glacial Maximum (LGM), ice sheets constricted the Denmark Strait aperture in addition to ice eustatic/isostatic effects which reduced its depth (today ~630 m) by ~130 m. These factors, combined with a reduced north-south density gradient of the water-masses, are expected to have restricted or even reversed the LGM DSO intensity. To better constrain these boundary conditions, we present a first reconstruction of the glacial DSO, using four new and four published epibenthic and planktic stable-isotope records from sites to the north and south of the Denmark Strait. The spatial and temporal distribution of epibenthic delta18O and delta13C maxima reveals a north-south density gradient at intermediate water depths from sigma0 ~28.7 to 28.4/28.1 and suggests that dense and highly ventilated water was convected in the Nordic Seas during the LGM. However, extremely high epibenthic delta13C values on top of the Mid-Atlantic Ridge document a further convection cell of Glacial North Atlantic Intermediate Water to the south of Iceland, which, however, was marked by much lower density (sigma0 ~28.1). The north-south gradient of water density possibly implied that the glacial DSO was directed to the south like today and fed Glacial North Atlantic Deep Water that has underthrusted the Glacial North Atlantic Intermediate Water in the Irminger Basin.