128 resultados para SIMULATING FLUIDS
Resumo:
Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (d44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of d44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, d44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the d44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.
Resumo:
Depending on the temperature and the extent of diagenetic alteration of fluid chemistry, fluid flow at convergent margins may transfer important quantities of heat and mass between the crust and seawater, thereby influencing global mass, isotopic and heat budgets. In the North Aoba Basin, an intra-arc basin located at the New Hebrides Island Arc, alteration of volcanic ash to clay minerals and zeolites forms a CaCl2 brine, perhaps in less than 1 to 3 m.y. The brine results from an exchange of Ca for Na, K, and Mg, and an increase in Cl concentrations to a maximum of 1241 mM. The Cl increase is partly due to the transfer of H2O from the pore fluid into authigenic minerals, but water mass balances, d18O-Cl correlations, and Br/Cl ratios suggest that there is a source of Cl in the sediments. Concentration profiles indicate that Li is transferred from the fluid to solid phase at depths <300 meters below seafloor (mbsf), but at greater depths it is transferred from the solid to fluid phase, at temperatures possibly as low as 25°C. In the accretionary wedge extensive fluid flow appears to be confined to highly faulted regions. Although Cl concentrations less than seawater value are common at convergent margins, the New Hebrides margin contains little low-Cl fluid. Br/Cl ratios suggest the low-Cl fluid is from dilution, and d18O values indicate the water may be derived from mineral dehydration and mixing with meteoric water. The New Hebrides margin exhibits few surface manifestations of venting (e.g., sulfide-oxidizing benthic biological communities, carbonate crusts, mud volcanoes) and thus fluid fluxes may be smaller than at many other margins.
Resumo:
Fluids in subduction zones can influence seismogenic behaviour and prism morphology. The Eastern Makran subduction zone, offshore Pakistan, has a very thick incoming sediment section of up to 7.5 km, providing a large potential fluid source to the accretionary prism. A hydrate-related bottom simulating reflector (BSR), zones of high amplitude reflectivity, seafloor seep sites and reflective thrust faults are present across the accretionary prism, indicating the presence of fluids and suggesting active fluid migration. High amplitude free gas zones and seep sites are primarily associated with anticlinal hinge traps, and fluids here appear to be sourced from shallow biogenic sources and migrate to the seafloor along minor normal faults. There are no observed seep sites associated with the surface expression of the wedge thrust faults, potentially due to burial of the surface trace by failure of the steep thrust ridge slopes. Thrust fault reflectivity is restricted to the upper 3 km of sediment and the deeper décollement is non-reflective. We interpret that fluids and overpressure are not common in the deeper stratigraphic section. Thermal modelling of sediments at the deformation front suggests that the deeper sediment section is relatively dewatered and not currently contributing to fluid expulsion in the Makran accretionary prism.
Resumo:
Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%). The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by a-recoil injection of 234Th. The fraction of 238U decays that result in a-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 0.0000004 to 0.000002 1/yr. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 1000 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials. The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (R_d) of soils and deep-sea sediments can be approximately described by the expression R_d ~ 0.1 1/age for ages spanning 1000 to 500,000,000 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.
Resumo:
Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid d26Mg values increase with depth by as much as 2 per mil. Because carbonates preferentially incorporate 24Mg (low d26Mg), the increase in pore-fluid d26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid d26Mg values decrease with depth by up to 2 per mil. The decline in pore-fluid d26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured d26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7 per mil depleted in d26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the studied sites, our results suggest that magnesium incorporated into clay minerals is enriched in d26Mg by 0 per mil to +1.25 per mil relative to the precipitating fluid. This work demonstrates the utility of magnesium isotopes as a tracer for magnesium sources/sinks in low-temperature aqueous systems.
Resumo:
A numerical model of sulfate reduction and isotopic fractionation has been applied to pore fluid SO4**2- and d34S data from four sites drilled during Ocean Drilling Program (ODP) Leg 168 in the Cascadia Basin at 48°N, where basement temperatures reach up to 62°C. There is a source of sulfate both at the top and the bottom of the sediment column due to the presence of basement fluid flow, which promotes bacterial sulfate reduction below the sulfate minimum zone at elevated temperatures. Pore fluid d34S data show the highest values (135 per mil) yet found in the marine environment. The bacterial sulfur isotopic fractionation factor, a, is severely underestimated if the pore fluids of anoxic marine sediments are assumed to be closed systems and Rayleigh fractionation plots yield erroneous values for a by as much as 15 per mil in diffusive and advective pore fluid regimes. Model results are consistent with a = 1.077+/-0.007 with no temperature effect over the range 1.8 to 62°C and no effect of sulfate reduction rate over the range 2 to 10 pmol/ccm/day. The reason for this large isotopic fractionation is unknown, but one difference with previous studies is the very low sulfate reduction rates recorded, about two orders of magnitude lower than literature values that are in the range of µmol/ccm/day to tens of nmol/ccm/day. In general, the greatest 34S depletions are associated with the lowest sulfate reduction rates and vice versa, and it is possible that such extreme fractionation is a characteristic of open systems with low sulfate reduction rates.
Resumo:
Boron contents and boron, carbon and oxygen stable isotopes were determined for authigenic carbonates recovered from Ocean Drilling Program Leg 146, Oregon margin. Carbonate precipitates are the most widespread authigenic phase in the shallow accretionary wedge and carry chemical information about long-term variations in pore fluid origin and flow paths in the Cascadia subduction zone. Drilling the first ridge (toe area including the frontal thrust) and the second ridge (or Hydrate Ridge) of the prism demonstrated different fluid regimes, with higher B contents in the authigenic precipitates at the toe. The delta11B of 18 authigenic precipitates analysed ranges from 13.9 per mil to as high as 39.8 per mil, extending the upper range of previously reported carbonate delta11B values considerably. When related to the delta11B ratio of their parent solutions, these data are characteristic of fluid-related processes in accretionary prisms. Together with delta13C and delta18O, delta11B ratios of the carbonate concretions, nodules and crusts allow one to distinguish between precipitation influenced by (i) seawater, (ii) fluid reservoirs at different depth levels within the accretionary prism and (iii) cage water from dissociated gas hydrates, the latter possibly indicating a fluctuation of the bottom simulating reflector during most recent Earth's history. From this first systematic boron study on authigenic precipitates from an accretionary prism it is suggested that B contents of such carbonate crusts and concretions exceed those reported for other marine carbonates. Given the abundance of such precipitates at convergent margins, they represent a significant B sink in geochemical cycling. Isotopic compositions of the parent fluids to the carbonates mirror B chemistry of modern pore waters from convergent margins. The precipitates carry information of different subduction-related fluid processes over a certain period of time, and hence are a crucial tracer in the investigation of palaeo-fluid flow.