347 resultados para Russia--Maps


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kamchatka Peninsula of northeastern Russia is located along the northwestern margin of the Bering Sea and consists of zones of complexly deformed accreted terranes. Along the northern portion of the peninsula, progressing from then orthwestem Bering Sea inland the Olyutorskiy, Ukelayat, and Koryak superterranes area acreted to the Okhotsk-Chukotsk volcanic-plutonic bell in northern-most Kamchatka. A sedimentary sequence of Albian to Maastrichtian age overlap terranes and units of the Koryak superterrane and constrains their accretion time with this region of the North America plate. Ophiolite complexes, widespread within the Koryak superterrane, are associated with serpentinite melanges and some of the ophiolite terranes include large portions of weakly serpentinized hyperbasites, layered gabbro, sheeted dikes, and pillow basalts outcropping as internally coherent blocks within a sheared melange matrix. Interpretation of magnetic anomalies allow the correlation of the Ukelayat with the West Kamchatka and Sredinny Range superterranes. The Olyutorskiy composite terrane may be correlated with the central and southern Kamchatka Peninsula Litke, Eastern Ranges and Vetlov composite terranes. The most "out-board" of the central and southern Kamchatka Peninsula terranes is the Kronotsky composite terrane, weil exposed along the Kamchatka, Kronotsky and Shipunsky Capes. Using regional geological constraints, paleomagnetism, and plate kinematic models for the Pacific basin a regional model can be proposed in which accretion of the Koryak composite terrane to the North America plate occurs during the Campanian-Maastrichtian, followed by the accretion of the Olyutorskiy composite terrane in the Middle Eocene, and the Late Oligocene-Early Miocene collision of the Kronotsky composite terrane. A revised age estimate of a key overlapping sedirnentary sequence of the Koryak superterrane, calibrated with new Ar40/Ar39 data, supports its Late Cretaceous accretion age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithological, geochemical, stratigraphic, and paleoecological features of carbonaceous sediments in the Late Jurassic Volgian Basin of the East European Platform (Kostroma Region) are considered. The shale-bearing sequence studied is characterized by greater sedimentological completeness as compared with its stratotype sections in the Middle Volga region (Gorodishche, Kashpir). Stratigraphic position and stratigraphy of the shale-bearing sequence, as well as distribution of biota in different sedimentation settings are specified. It is shown that Volgian sediments show distinct cyclic structure. The lower and upper elements of cyclites consist of high-carbonaceous shales and clayey-calcareous sediments, respectively, separated by transitional varieties. Bioturbation structures in different rocks are discussed. Microcomponent composition and pyrolytic parameters of organic matter, as well as distribution of chemical elements in lithologically variable sediments are analyzed. Possible reasons responsible for appearance of cyclicity and accumulation of organic-rich sediments are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Greater understanding of the processes underlying biological invasions is required to determine and predict invasion risk. Two subspecies of olive (Olea europaea subsp. europaea and Olea europaea subsp. cuspidata) have been introduced into Australia from the Mediterranean Basin and southern Africa during the 19th century. Our aim was to determine to what extent the native environmental niches of these two olive subspecies explain the current spatial segregation of the subspecies in their non-native range. We also assessed whether niche shifts had occurred in the non-native range, and examined whether invasion was associated with increased or decreased occupancy of niche space in the non-native range relative to the native range. Location: South-eastern Australia, Mediterranean Basin and southern Africa. Methods: Ecological niche models (ENMs) were used to quantify the similarity of native and non-native realized niches. Niche shifts were characterized by the relative contribution of niche expansion, stability and contraction based on the relative occupancy of environmental space by the native and non-native populations. Results: Native ENMs indicated that the spatial segregation of the two subspecies in their non-native range was partly determined by differences in their native niches. However, we found that environmentally suitable niches were less occupied in the non-native range relative to the native range, indicating that niche shifts had occurred through a contraction of the native niches after invasion, for both subspecies. Main conclusions: The mapping of environmental factors associated with niche expansion, stability or contraction allowed us to identify areas of greater invasion risk. This study provides an example of successful invasions that are associated with niche shifts, illustrating that introduced plant species are sometimes readily able to establish in novel environments. In these situations the assumption of niche stasis during invasion, which is implicitly assumed by ENMs, may be unreasonable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of a Secchi depth data mining study for the North Sea - Baltic Sea region. 40,829 measurements of Secchi depth were compiled from the area as a result of this study. 4.3% of the observations were found in the international data centers [ICES Oceanographic Data Center in Denmark and the World Ocean Data Center A (WDC-A) in the USA], while 95.7% of the data was provided by individuals and ocean research institutions from the surrounding North Sea and Baltic Sea countries. Inquiries made at the World Ocean Data Center B (WDC-B) in Russia suggested that there could be significant additional holdings in that archive but, unfortunately, no data could be made available. The earliest Secchi depth measurement retrieved in this study dates back to 1902 for the Baltic Sea, while the bulk of the measurements were gathered after 1970. The spatial distribution of Secchi depth measurements in the North Sea is very uneven with surprisingly large sampling gaps in the Western North Sea. Quarterly and annual Secchi depth maps with a 0.5° x 0.5° spatial resolution are provided for the transition area between the North Sea and the Baltic Sea (4°E-16°E, 53°N-60°N).