255 resultados para Reversals: Process, Time Scale, Magnetostratigraphy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3*10**-10 to 2.5*10**-7 ccSTP/g by crushing and from 5.4*10**-8 to 2.4*10**-7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8+/-1. The lower values are attributed to radiogenic helium from in situ alüha-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene - Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 134 was located in the central part of the New Hebrides Island Arc, in the Southwest Pacific. Here the d'Entrecasteaux Zone of ridges, the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain, is colliding with the arc. The region has a Neogene history of subduction polarity reversal, ridge-arc collision, and back-arc spreading. The reasons for drilling in this region included the following: (1) to determine the differences in the style and time scale of deformation associated with the two ridge-like features (a fairly continuous ridge and an irregularly topographic seamount chain) that are colliding with the central New Hebrides Island Arc; (2) to document the evolution of the magmatic arc in relation to the collision process and possible Neogene reversal of subduction; and (3) to understand the process of dewatering of a small accretionary wedge associated with ridge collision and subduction. Seven sites were occupied during the leg, five (Sites 827-831) were located in the d'Entrecasteaux Zone where collision is active. Three sites (Sites 827, 828, and 829) were located where the North d'Entrecasteaux Ridge is colliding, whereas two sites (Sites 830 and 831) were located in the South d'Entrecasteaux Chain collision zone. Sites 828 (on North d'Entrecasteaux Ridge) and 831 (on Bougainville Guyot) were located on the Pacific Plate, whereas all other sites were located on a microplate of the North Fiji Basin. Two sites (Sites 832 and 831) were located in the intra-arc North Aoba Basin. Results of Leg 134 drilling showed that forearc deformation associated with the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain collision is distinct and different. The d'Entrecasteaux Zone is an Eocene subduction/obduction complex with a distinct submerged island arc. Collision and subduction of the North d'Entrecasteaux Ridge results in off scraping of ridge material and plating of the forearc with thrust sheets (flakes) as well as distinct forearc uplift. Some offscraped sedimentary rocks and surficial volcanic basement rocks of the North d'Entrecasteaux Ridge are being underplated to the New Hebrides Island forearc. In contrast, the South d'Entrecasteaux Chain is a serrated feature resulting in intermittent collision and subduction of seamounts. The collision of the Bougainville Guyot has indented the forearc and appears to be causing shortening through thrust faulting. In addition, we found that the Quaternary relative convergence rate between the New Hebrides Island Arc at the latitude of Espiritu Santo Island is as high as 14 to 16 cm/yr. The northward migration rate of the d'Entrecasteaux Zone was found the be ~2 to 4 cm/yr based on the newly determined Quaternary relative convergence rate. Using these rates we established the timing of initial d'Entrecasteaux Zone collision with the arc at ~3 Ma at the latitude of Epi Island and fixed the impact of the North d'Entrecasteaux Ridge upon Espiritu Santo Island at early Pleistocene (between 1.89 and 1.58 Ma). Dewatering is occurring in the North d'Entrecasteaux Ridge accretionary wedge, and the wedge is dryer than other previously studied accretionary wedges, such as Barbados. This could be the result of less sediment being subducted at the New Hebrides compared to the Barbados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Below oxygen isotope stage 16, the orbitally derived time-scale developed by Shackleton et al. (1990) from ODP site 677 in the equatorial Pacific differs significantly from previous ones (e.g. Kominz and Pisias, 1979 doi:10.1126/science.204.4389.171; Morley and Hays, 1981 doi:10.1016/0012-821X(81)90034-0, Imbrie et al. 1984), yielding estimated ages for the last Earth magnetic reversals that are 5-7% older than the K/Ar values (Mankinen and Dalrymple, 1979 doi:10.1029/JB084iB02p00615; Berggren et al., 1985; Harland and Armstrong, 1989) but are in good agreement with recent Ar/Ar dating (Baksi et al., 1991; 1992 doi:10.1126/science.256.5055.356; Spell and McDougall, 1992 doi:10.1029/92GL01125). These results suggest that in the lower Brunhes and upper Matuyama chronozones most deep-sea climatic records retrieved so far apparently missed or misinterpreted several oscillations predicted by the astronomical theory of climate. To test this hypothesis, we studied a high-resolution oxygen isotope record from giant piston core MD900963 (Maldives area, tropical Indian Ocean) in which precession-related oscillations in delta18O are particularly well expressed, owing to the superimposition of a local salinity signal on the global ice volume signal (Rostek et al., 1993 doi:10.1038/364319a0). Three additional precession-related cycles are observed in oxygen isotope stages 17 and 18 of core MD900963, compared to the SPECMAP composite curves (Imbrie et al., 1984; Prell et al., 1986 doi:10.1029/PA001i002p00137), and stage 21 clearly presents three precession oscillations, as predicted by Shackleton et al. (1990). The precession peaks found in the delta18O record from core MD900963 are in excellent agreement with climatic oscillations predicted by the astronomical theory of climate. Our delta18O record therefore permits the development of an accurate astronomical time-scale. Based on our age model, the Brunhes-Matuyama reversal is dated at 775 +/- 10 ka, in good agreement with the age estimate of 780 ka obtained by Shackleton et al. (1990) and recent radiochronological Ar/Ar datings on lavas (Baksi et al., 1991; 1992; Spell and McDougall, 1992). We developed a new low-latitude, Upper Pleistocene delta18O reference record by stacking and tuning the delta18O records from core MD900963 and site 677 to orbital forcing functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of the Southern Ocean climate during the late Eocene-late Oligocene interval is examined through highresolution, quantitative calcareous nannofossil analyses on samples from the Southern Ocean sections on Maud Rise and Kerguelen Plateau. We determined the abundance patterns of the counted species to clarify the biostratigraphy, which we correlated with high-resolution magnetostratigraphy [Roberts, A.P., Bicknell, S.J., Byatt, J., Bohaty, S.M., Florindo, F., Harwood, D.M., 2003a. Magnetostratigraphic calibration of Southern Ocean diatom datums from the Eocene-Oligocene of Kerguelen Plateau (Ocean Drilling Program Sites 744 and 748). In: Florindo, F., Cooper, A.K., O'Brien, P.A. (Eds.), Antarctic Cenozoic Palaeoenvironments: Geologic Record and Models. Palaeogeogr., Palaeoclimatol., Palaeoecol. 198 145-168; Florindo, F., Roberts, A.P., in press. Eocene-Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Geol. Soc. Am. Bull.], and used this data to interpret paleoceanographic changes through the late Eocene to late Oligocene. Percentage plots of the individual species, compared with R-mode principal component and cluster analysis results, allowed us to divide the assemblages into three groups: temperate-water taxa, cool-water taxa, and no temperature-affinity taxa. We attempt correlations between these paleoecological groups and the major sea-surface temperature (SST) variations with tectonic and paleoceanographic changes in the Southern Ocean. During the late Eocene, the nannofossil assemblage data reveal that there were several minor SST decreases (coolings) from 36 to 34 Ma, before the Eocene/Oligocene (E/O) boundary. A sharp cooling event, dated at 33.54 Ma (earliest Oligocene), occurred about 160 kyr after the E/O boundary, which is dated at 33.7 Ma. Relatively stable, cool conditions are interpreted to persist until the latest Oligocene, when an increase in abundance of temperate-water taxa, which corresponds to an antithetical decrease in abundance of cool-water indicators, is recorded. On the basis of our dating, the opening of the Drake Passage, allowing shallow-water circulation, began by 33.54 Ma at the latest, while the establishment of deep-water connections through the Tasmanian Gateway occurred at 33 Ma, as suggested by Exon et al. [Proc. ODP, Init. Rep. 189 (2001) 1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new planktic foraminiferal zonal scheme is presented for subdivision of Upper Cretaceous pelagic carbonate sequences in the circum-Antarctic region. Definition of the zones and subzones is based study of foraminifera from 13 deep-sea sections that were poleward of 50 °S paleolatitude and within the Austral Biogeographic Realm during Late Cretaceous time. The proposed biostratigraphic scheme includes seven Upper Cretaceous zones, with an average stratigraphic resolution of 4.4 m.y., and six subzones, which are all within the Maastrichtian Stage, with an average stratigraphic resolution of 1.4 m.y. The considerably higher resolution in the Maastrichtian Stage is a result of good foraminiferal preservation, availability of high quality magnetostratigraphic sections, and complete composite stratigraphic recovery in the Atlantic and Indian Ocean sectors of the Antarctic Ocean. Diminished resolution in the pre-Maastrichtian sediments of southern high latitude sections results from: (1) incomplete recovery of the middle Campanian, lower Santonian and most of the Cenomanian-lower Coniacian intervals, (2) presence of local and regional hiatuses, (3) paleobathymetric shallowing with increasing age at some sites, resulting in impoverished older planktic assemblages, and (4) poorer preservation with increasing burial depth. Cross-latitude correlation of the Campanian and older austral sequences may be improved with future drilling by recovery of sections that span existing stratigraphic gaps. Correlation of high latitude bioevents with chemostratigraphic events and their intercalibration with the magnetostratigraphy and the Geomagnetic Polarity Time Scale are needed for better chronostratigraphic resolution in existing high latitude sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use an X-ray fluorescence (XRF) Core Scanner to obtain records of elemental concentrations in sediment cores from Ocean Drilling Program (ODP) Leg 171B, Site 1052 (Blake Nose, Atlantic margin of northern Florida).This record spans the Middle to Late Eocene, as indicated by bio- and magnetostratigraphy, and displays cyclicity that can be attributed to the orbital forcing of a combination of climate, ocean circulation, or productivity. We use the XRF counts of iron and calcium as a proxy of the relative contribution from calcium carbonate and terrestrial material to construct a new composite depth record. This new composite depth record provides the basis to extend the astronomically calibrated geological time scale into the Middle Eocene and results in revised estimates for the age and duration of magnetochrons C16 through C18. In addition, we find an apparent change in the dominance of orbitally driven changes in obliquity and climatic precession at around 36.7 Ma on our new time scale. Long term amplitude modulation patterns of eccentricity and obliquity in the data do not seem to match the current astronomical model any more, suggesting the possibility of new constraints on astronomical calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrated Ocean Drilling Program (IODP) Expedition 320 recovered high-quality paleomagnetic records with over 800 dated reversals and decimeter-scale cyclic sediments which provide an outstanding framework to inter-calibrate major fossil groups and refine magnetic polarity chrons for the early Miocene, the entire Oligocene and the late Eocene Epoch. In order to reconstruct the climate history of the Equatorial Pacific one of the major objectives of the Pacific Equatorial Age Transect (PEAT) is the compilation of a Cenozoic Megasplice which integrates all available bio-, chemo-, and magnetostratigraphic data including key records from Ocean Drilling Program (ODP) Leg 199. Here we present extended post-cruise refinements of the shipboard composite depth scales and composite records of IODP Expedition 320 Sites U1331, U1332, U1333, U1334 as well as ODP Leg 199 Sites 1218, 1219 and 1220. The revised composite records were used to perform a site-to-site correlation and integration of Leg 199 and Exp. 320 sites. Based on this decimeter scale correlation a high resolution integrated paleomagnetic and biostratigraphic framework for the Equatorial Pacific is established covering the time from 20 to 40 Ma. This unprecedented sedimentary compendium from the Equatorial Pacific will be the backbone for paleoceanographic reconstructions for the late Paleogene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The voluminous volcanic eruptions in the Nauru Basin, Western Pacific, have long been regarded as important research targets for tectonic history of the Pacific Plate and for the widespread Cretaceous volcanic activity in the Western Pacific. The Nauru Basin volcanic rocks were recovered at Site 462 by Deep Sea Drilling Project (DSDP) Legs 61 and 89, where more than 600 m of lavas and sills were drilled, thereby making it the deepest penetration into crust of Cretaceous age in the Pacific Ocean. For paleomagnetism, this section represents a unique possibility for averaging out secular variation to obtain a reliable paleolatitude estimate. However, previous paleomagnetic studies have only been subjected to alternating field (AF) demagnetization on several core samples, thus, unable to provide comprehensive understanding on the paleolatitude of the basin. The work reported here aims to determine the Cretaceous paleomagnetic paleolatitude for the Pacific Plate and define the magnetostratigraphy for the basaltic sections drilled in the Nauru Basin. A total of 391 basaltic rock samples were carefully re-sampled from DSDP Sites 462 and 462A. Stepwise thermal and AF demagnetizations have isolated characteristic components in the majority of the samples. The most important findings from this study include: (1) Two normal and one reversed polarity intervals are identified in Site 462, and six normal and six reversed polarity intervals are found in Site 462A, although possible erroneous markings of the opposite azimuth for some reversed polarity cores during the DSDP coring cannot be completely ruled out. (2) Based on previous radiometric ages, the magnetostratigraphic correlations with the Geomagnetic Polarity Time Scale (GPTS) indicate that the lower-basaltic flow unit in Site 462A began to erupt at least before 130 Ma. No correlation is available for the upper-sill unit. (3) Paleosecular variation for the lower-flow unit has been sufficiently averaged out; whereas bias may exist for that of the upper-sill unit; (4) The calculated mean inclination of ~50° for the lower-flow unit yields a paleolatitude of 30.8°S for the Nauru Basin at the time of emplacement. This value is well to the north of suggested location in plate reconstruction models, suggesting that there has been a significant amount of apparent polar wander of the Nauru Basin and Pacific plate since 130 Ma. In addition, the paleolatitude for the Nauru Basin is ~7° further south and the basin's age is more than 10 my older than those of the Ontong Java Plateau (OJP), which suggest that the volcanic eruptions of the lower flows in the Nauru Basin are unlikely related to the emplacement of the Ontong Java Plateau.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration and isotopic composition of Nd in water and particles collected in the western Mediterranean Sea are studied by two complementary approaches. The first examines local vertical profiles and time series; the second considers the global Nd budget of the whole western Mediterranean Sea. These two approaches are used to quantify the Nd inputs and the dissolved/particulate exchange processes in the water column. Two profiles of Nd in seawater in the Ligurian Sea taken in May and October 1992 show an average epsilon-Nd(0) = -9.6 ± 0.5. Seawater from the Strait of Sicily, representative of the eastern waters flowing into the western basin, is more radiogenic [epsilon-Nd(0) = -7.7 ± 0.6]. Profiles of particulate matter collected in sediment traps in coastal (Gulf of Lions) and offshore (Ligurian Sea) environments are also shown. Particles are enriched in Nd and are more radiogenic near the coast than offshore. Measurements of Nd concentration and epsilon-Nd(0) of external sources to the western Mediterranean Sea compared with the literature data demonstrate that particulate flux of atmospheric Saharan origin are more rich ([Nd] = 38 ± 10 µg/g) and less radiogenic [epsilon-Nd(0) = -13.0 ± 1.0] than riverine particulate discharge ([Nd] = 21.5 ± 4.4 µg/g; epsilon-Nd(0) = -10.1 ± 0.5), allowing to trace Nd particulate inputs in the water column. Nd atmospheric flux appears to be the major source into the whole western basin, although lateral advection of riverine material is the prevailing process in the coastal environment. Offshore, the vertical propagation of an important Saharan dust event has been recorded for two months in sediment traps at 80, 200 and 1000 m. The evolution of the resulting negative epsilon-Nd(0) peak along depth and time shows that the particles reach 200 m on a time scale of one week. For the first time, the Nd budget in the western Mediterranean basin is constrained by both concentrations and isotopic compositions measured in particles and seawater. Surface budget requires a remobilization of 30 ± 20% of particulate Nd input. In deep water, dissolved Nd concentrations are balanced by a scavenging of 10 ± 20% of the sinking particulate flux. On the other hand, the deep isotopic compositions suggest an exchange between 30 ± 20% of the sinking particles and the deep waters. The hypothesis of a non-stationary regime for the surface waters in the Ligurian Sea is also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monthly measurements of pH, alkalinity and oxygen over two years (February 1998-February 2000) at the Dyfamed site in the central zone of the Ligurian-Provençal Basin of the Mediterranean made it possible to assess the vertical distributions (5-2000 m) and the seasonal variations of these properties. Alkalinity varies linearly with salinity between surface water and the Levantine Intermediate Water (marked by a maximum of temperature and salinity). In deep water, total alkalinity is also correlated linearly to salinity, but the slope of the regression line is 15% less. In surface water, the pH at 25°C varies between 7.91 and 8.06 on the total proton scale depending upon the season. The lowest values are observed in winter, the highest in spring and in summer. These variations are primarily due to biological production. The pH goes through a minimum around 150-200 m and a small maximum below the intermediate water. The total dissolved inorganic carbon content (deduced from pH and alkalinity) is variable in surface water (2205-2310 ?mol/kg) and has a maximum in intermediate water, which is related to the salinity maximum. Normalized total inorganic carbon at a constant salinity is strongly negatively correlated with pH at 25°C. The fugacity of CO2, (fCO2) varies between 320 and 430 ?atm in surface water, according to the season. Below the seasonal thermocline, the maximum fCO2 (about 410 ?atm) is located around 150-200 m. The presence of a minimum of oxygen in the intermediate water of this area has been observed for several years, but our measurements made it possible to specify the relationship between oxygen and salinity in deep water. Data from the intense vertical mixing during the winters of 1999 and 2000 were used to calculate the oxygen quantity exchanged with the atmosphere during these periods. The estimated quantity of oxygen entering the Mediterranean Sea exceeds that deduced from exchange coefficients calculated with the formula of Wanninkhof and McGillis. During the vertical mixing in the 1999 winter, fCO2 in surface water was on average below equilibrium with atmospheric fCO2, thus implying that CO2 was entering the sea. However, on this time scale, even with high exchange coefficients, the estimated CO2 uptake had no significant influence on the inorganic carbon content in the water column.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of an orbitally tuned time scale for the ODP leg 138 sites provides biostratigraphers a very high resolution chronostratigraphic framework. With this framework we are better able to define which of the first and last appearances of species appear to be synchronous. In addition, the geographic distribution of sites provides the means with which the detailed spatial patterns of invasion of new species and the extinction of older species can be mapped. These maps not only provide information on the process of evolution, migration, and extinction, they can also be related to water mass distributions and near-surface circulation of the ocean. Of 39 radiolarian events studied at 11 sites in the eastern equatorial Pacific, 28 were found to have a minimum range in their estimated age that exceeded 0.15 m.y. The temporal pattern of first and last appearances of these diachronous events have coherent spatial patterns that indicate shifts in the areas of high oceanographic gradients over the past 10 Ma. These changes in the locations of high gradient regions suggest that the South Equatorial Current (SEC) was north of its present position prior to approximately 7 Ma. There was a southward shift in the northern boundary of this current between approximately 6 and 7 Ma, and the development of a relatively strong gradient between the northeastern and northwestern sites. Between approximately 3.7 and 3.4 Ma, there was a very slight northward shift in the northern boundary of the SEC and the steep gradients between the northeastern and northwestern sites may have disappeared. This change is thought to be associated with the closing of the Isthmus of Panama. The temporal-spatial patterns of diachronous events younger than 3.4 Ma are consistent with patterns of circulation in the modern ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drilling at Sites 534 and 603 of the Deep Sea Drilling Project recovered thick sections of Berriasian through Aptian white limestones to dark gray marls, interbedded with claystone and clastic turbidites. Progressive thermal demagnetization removed a normal-polarity overprint carried by goethite and/or pyrrhotite. The resulting characteristic magnetization is carried predominantly by magnetite. Directions and reliability of characteristic magnetization of each sample were computed by using least squares line-fits of magnetization vectors. The corrected true mean inclinations of the sites suggest that the western North Atlantic underwent approximately 6° of steady southward motion between the Berriasian and Aptian stages. The patterns of magnetic polarity of the two sites, when plotted on stratigraphic columns of the pelagic sediments without turbidite beds, display a fairly consistent magnetostratigraphy through most of the Hauterivian-Barremian interval, using dinoflagellate and nannofossil events and facies changes in pelagic sediment as controls on the correlations. The composite magnetostratigraphy appears to include most of the features of the M-sequence block model of magnetic anomalies from Ml to Ml ON (Barremian-Hauterivian) and from M16 to M23 (Berriasian-Tithonian). The Valanginian magnetostratigraphy of the sites does not exhibit reversed polarity intervals corresponding to Ml 1 to M13 of the M-sequence model; this may be the result of poor magnetization, of a major unrecognized hiatus in the early to middle Valanginian in the western North Atlantic, or of an error in the standard block model. Based on these tentative polarity-zone correlations, the Hauterivian/Barremian boundary occurs in or near the reversed-polarity Chron M7 or M5, depending upon whether the dinoflagellate or nannofossil zonation, respectively, is used; the Valanginian/Hauterivian boundary, as defined by the dinoflagellate zonation, is near reversed-polarity Chron M10N.