434 resultados para Reef


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral reef organisms are increasingly and simultaneously affected by global and local stressors such as ocean acidification (OA) and reduced light availability. However, knowledge of the interplay between OA and light availability is scarce. We exposed 2 calcifying coral reef species (the scleractinian coral Acropora millepora and the green alga Halimeda opuntia) to combinations of ambient and increased pCO2 (427 and 1073 µatm, respectively), and 2 light intensities (35 and 150 µmol photons/m**2/s) for 16 d. We evaluated the individual and combined effects of these 2 stressors on weight increase, calcification rates, O2 fluxes and chlorophyll a content for the species investigated. Weight increase of A. millepora was significantly reduced by OA (48%) and low light intensity (96%) compared to controls. While OA did not affect coral calcification in the light, it decreased calcification in the dark by 155%, leading to dissolution of the skeleton. H. opuntia weight increase was not affected by OA, but decreased (40%) at low light. OA did not affect algae calcification in the light, but decreased calcification in the dark by 164%, leading to dissolution. Low light significantly reduced gross photosynthesis (56 and 57%), net photosynthesis (62 and 60%) and respiration (43 and 48%) of A. millepora and H. opuntia, respectively. In contrast to A. millepora, H. opuntia significantly increased chlorophyll content by 15% over the course of the experiment. No interactive effects of OA and low light intensity were found on any response variable for either organism. However, A. millepora exhibited additive effects of OA and low light, while H. opuntia was only affected by low light. Thus, this study suggests that negative effects of low light and OA are additive on corals, which may have implications for management of river discharge into coastal coral reefs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underwater spectral reflectance was measured for selected biotic and abiotic coral reef features of Heron Reef from June 25-30, 2006. Spectral reflectance's of 105 different benthic types were obtained in-situ. An Ocean Optics USB2000 spectrometer was deployed in an custom made underwater housing with a 0.5 m fiber-optic probe mounted next to an artificial light source. Spectral readings were collected with the probe(bear fibre) about 5 cm from the target to ensure that the target would fill the field of view of the fiber optic (FOV diameter ~4.4 cm), as well as to reduce the attenuating effect of the intermediate water (Roelfsema et al., 2006). Spectral readings included for one target included: 1 reading of the covered spectral fibre to correct for instrument noise, 1 reading of spectralon panel mounted on divers wrist to measure incident ambient light, and 8 readings of the target. Spectral reflectance was calculated for each target by first subtracting the instrument noise reading from each other reading. The corrected target readings were then divided by the corrected spectralon reading resulting in spectral reflectance of each target reading. An average target spectral reflectance was calculated by averaging the eight individual spectral reflectance's of the target. If an individual target spectral reflectance was visual considered an outlier, it was not included in the average spectral reflectance calculation. See Roelfsema at al. (2006) for additional info on the methodology of underwater spectra collection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method for efficient inversion of arbitrary radiative transfer models for image analysis is presented. The method operates by representing the shape of the function that maps model parameters to spectral reflectance by an adaptive look-up tree (ALUT) that evenly distributes the discretization error of tabulated reflectances in spectral space. A post-processing step organizes the data into a binary space partitioning tree that facilitates an efficient inversion search algorithm. In an example shallow water remote sensing application, the method performs faster than an implementation of previously published methodology and has the same accuracy in bathymetric retrievals. The method has no user configuration parameters requiring expert knowledge and minimizes the number of forward model runs required, making it highly suitable for routine operational implementation of image analysis methods. For the research community, straightforward and robust inversion allows research to focus on improving the radiative transfer models themselves without the added complication of devising an inversion strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are few in situ studies showing how net community calcification (Gnet) of coral reefs is related to carbonate chemistry, and the studies to date have demonstrated different predicted rates of change. In this study, we measured net community production (Pnet), Gnet, and carbonate chemistry of a reef flat at One Tree Island, Great Barrier Reef. Diurnal pCO2 variability of 289-724 µatm was driven primarily by photosynthesis and respiration. The reef flat was found to be net autotrophic, with daily production of ? 35 mmol C/m**2/d and net calcification of ? 33 mmol C/m**2/d . Gnet was strongly related to Pnet, which drove a hysteresis pattern in the relationship between Gnet and aragonite saturation state (Omega ar). Although Pnet was the main driver of Gnet, Omega ar was still an important factor, where 95% of the variance in Gnet could be described by Pnet and Omega ar. Based on the observed in situ relationship, Gnet would be expected to reach zero when Omega ar is 2.5. It is unknown what proportion of a decline in Gnet would be through reduced calcification and what would occur through increased dissolution, but the results here support predictions that overall calcium carbonate production will decline in coral reefs as a result of ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic CO2 is causing warming and ocean acidification. Coral reefs are being severely impacted, yet confusion lingers regarding how reefs will respond to these stressors over this century. Since the 1982-1983 El Niño-Southern Oscillation warming event, the persistence of reefs around the Galápagos Islands has differed across an acidification gradient. Reefs disappeared where pH<8.0 and aragonite saturation state (Omega arag)<=3 and have not recovered, whereas one reef has persisted where pH>8.0 and Omega arag>3. Where upwelling is greatest, calcification by massive Porites is higher than predicted by a published relationship with temperature despite high CO2, possibly due to elevated nutrients. However, skeletal P/Ca, a proxy for phosphate exposure, negatively correlates with density (R=-0.822, p<0.0001). We propose that elevated nutrients have the potential to exacerbate acidification by depressing coral skeletal densities and further increasing bioerosion already accelerated by low pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continental margin off northeast Australia, comprising the Great Barrier Reef (GBR) platform and Queensland Trough, is the largest tropical mixed siliciclastic/carbonate depositional system in existence. We describe a suite of 35 piston cores and two Ocean Drilling Program (ODP) sites from a 130*240 km rectangular area of the Queensland Trough, the slope and basin setting east of the central GBR platform. Oxygen isotope records, physical property (magnetic susceptibility and greyscale) logs, analyses of bulk carbonate content and radiocarbon ages at these locations are used to construct a high resolution stratigraphy. This information is used to quantify mass accumulation rates (MARs) for siliciclastic and carbonate sediments accumulating in the Queensland Trough over the last 31,000 years. For the slope, highest MARs of siliciclastic sediment occur during transgression (1.0 Million Tonnes per year; MT/yr), and lowest MARs of siliciclastic (<0.1 MT/yr) and carbonate (0.2 MT/yr) sediment occur during sea level lowstand. Carbonate MARs are similar to siliciclastic MARs for transgression and highstand (1.1-1.4 MT/yr). In contrast, for the basin, MARs of siliciclastic (0-0.1 MT/yr) and carbonate sediment (0.2-0.4 MT/yr) are continuously low, and within a factor of two, for lowstand, transgression, and highstand. Generic models for carbonate margins predict that maximum and minimum carbonate MARs on the slope will occur during highstand and lowstand, respectively. Conversely, most models for siliciclastic margins suggest maximum and minimum siliciclastic MARs will occur during lowstand and transgression, respectively. Although carbonate MARs in the Queensland Trough are similar to those predicted for carbonate depositional systems, siliciclastic MARs are the opposite. Given uniform siliciclastic MARs in the basin through time, we conclude that terrigenous material is stored on the shelf during sea level lowstand, and released to the slope during transgression as wave driven currents transport shelf sediment offshore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) and its associated decline in calcium carbonate saturation states is one of the major threats that tropical coral reefs face this century. Previous studies of the effect of OA on coral reef calcifiers have described a wide variety of outcomes for studies using comparable partial pressure of CO2 (pCO2) ranges, suggesting that key questions remain unresolved. One unresolved hypothesis posits that heterogeneity in the response of reef calcifiers to high pCO2 is a result of regional-scale variation in the responses to OA. To test this hypothesis, we incubated two coral taxa (Pocillopora damicornis and massive Porites) and two calcified algae (Porolithon onkodes and Halimeda macroloba) under 400, 700 and 1000 µatm pCO2 levels in experiments in Moorea (French Polynesia), Hawaii (USA) and Okinawa (Japan), where environmental conditions differ. Both corals and H. macroloba were insensitive to OA at all three locations, while the effects of OA on P. onkodes were location-specific. In Moorea and Hawaii, calcification of P. onkodes was depressed by high pCO2, but for specimens in Okinawa, there was no effect of OA. Using a study of large geographical scale, we show that resistance to OA of some reef species is a constitutive character expressed across the Pacific.