126 resultados para QUEBEC-LABRADOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The observed long-term decrease in the regional fire activity of Eastern Canada results in excessive accumulation of organic layer on the forest floor of coniferous forests, which may affect climate-growth relationships in canopy trees. To test this hypothesis, we related tree-ring chronologies of black spruce (Picea mariana (Mill.) B.S.P.) to soil organic layer (SOL) depth at the stand scale in the lowland forests of Quebec's Clay Belt. Late-winter and early-spring temperatures and temperature at the end of the previous year's growing season were the major monthly level environmental controls of spruce growth. The effect of SOL on climate-growth relationships was moderate and reversed the association between tree growth and summer aridity from a negative to a positive relationship: trees growing on thin organic layers were thus negatively affected by drought, whereas it was the opposite for sites with deep (>20-30 cm) organic layers. This indicates the development of wetter conditions on sites with thicker SOL. Deep SOL were also associated with an increased frequency of negative growth anomalies (pointer years) in tree-ring chronologies. Our results emphasize the presence of nonlinear growth responses to SOL accumulation, suggesting 20-30 cm as a provisional threshold with respect to the effects of SOL on the climate-growth relationship. Given the current climatic conditions characterized by generally low-fire activity and a trend toward accumulation of SOL, the importance of SOL effects in the black spruce ecosystem is expected to increase in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation of Labrador Sea Water proper commenced about 7000 years ago during the Holocene interglacial. To test whether fresher surface water conditions may have inhibited Labrador Sea Water convection during the early Holocene we measured planktonic foraminiferal (Globigerina bulloides) oxygen isotopes (d18O) and Mg/Ca ratios at Orphan Knoll (cores HU91-045-093 and MD95-2024, 3488 m) in the Labrador Sea to reconstruct shallow subsurface summer conditions (temperature and seawater d18O). Lighter foraminiferal d18O values are recorded during the early Holocene between 11000 and 7000 years ago. Part of these lighter foraminiferal d18O values can be explained by increased calcification temperatures. Reconstructed seawater d18O values were, however, still on average 0.5 per mil lighter compared with those of recent times, confirming that fresher surface waters in the Labrador Sea were probably a limiting factor in Labrador Sea Water formation during the early Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two sites in the Labrador Sea and one site in Baffin Bay were drilled during Leg 105. Radiolarians were recovered at all three sites, although at Site 645 (Baffin Bay), radiolarians were present in useful numbers only in the mudline sample. Radiolarians of late Neogene age were recovered at Site 646 south of Greenland, while early Oligocene and early Miocene radiolarians were recovered from the Labrador Sea at Site 647. In Site 646, radiolarian and other coarse-fraction abundances vary dramatically from sample to sample and may reflect deep-water depositional processes as well as changes in surface-water conditions. Site 647 siliceous microfossils reach their peak abundance and preservation in Core 105-647A-25R and decline gradually upward into the lower Miocene (Cores 105-647A-13R and -14R). Siliceous microfossil abundances in counts of the > 38-µm Carbonate-free coarse fraction from the siliceous interval are correlated to each other, but not to the abundance of nonbiogenic coarse-fraction components. Radiolarian abundances in specimens per gram (but not diatom abundances) are correlated to bulk opal concentration and to the organic carbon content of the sediment. The abundance of radiolarians and other siliceous microfossils within the lower Oligocene to lower Miocene is interpreted as reflecting changes in surface-water productivity. With only a few exceptions, no stratigraphic indicator species were seen in samples from either Site 646 or Site 647. The absence of both tropical/subtropical and Norwegian-Greenland Sea stratigraphic forms is due to the dominance of subarctic North Atlantic taxa in Leg 105 assemblages. The early Oligocene and early Miocene assemblages recovered at Site 647 are of particular interest, as very little material of these ages has previously been recovered from the subarctic North Atlantic region, and virtually no descriptive work has been conducted on the more endemic components of the radiolarian assemblages from these time intervals. Thus, this report concentrates on providing, at least in part, the first comprehensive documentation of early Oligocene and early Miocene radiolarians from the subarctic North Atlantic, with emphasis on basic descriptions, measurements, and photographic documentation. However, synonymic work and formal designation of new species names has been deferred until additional material from other regions can be examined. The sole exception is the emendation of Theocalyptra tetracantha Bjorklund and Kellogg 1972 to Cycladophora tetracantha n. comb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geological reconstructions and general circulation models suggest that the onset of both Northern Hemisphere glaciation, 2.7 Myr ago, and convection of Labrador Sea Water (LSW) were caused by the closure of the Panama Gateway ~4.5 Myr ago. Time series data that have been obtained from studies of ferromanganese crusts from the northwestern Atlantic suggest that radiogenic isotopes of intermediate ocean residence time (Pb and Nd) can serve as suitable tracers to reconstruct these events. However, it has been unclear until now as to whether the changes that have been observed in isotope composition at this time are the result of increased thermohaline circulation or due to the effects of increased glacial weathering. In this paper we adopt a box model approach to demonstrate that the shifts in radiogenic isotope compositions are unlikely to be due to changes in convection in LSW but can be explained in terms of increases of erosion levels due to the glaciation of Greenland and Canada. Furthermore, we provide experimental evidence for the incongruent release of a labile fraction of strongly radiogenic Pb and nonradiogenic Nd from continental detritus eroding into the Labrador Sea. This can be attributed to the glacial weathering of old continents and accounts for the paradox that one of the areas of the world most deficient in radiogenic Pb should provide such a rich supply of radiogenic Pb to the oceans. An important general conclusion is that the compositions of radiogenic isotopes in seawater are not always a reflection of their continental sources. Perhaps more importantly, the transition from chemical weathering to mechanical erosion is likely to result in significant variations in radiogenic tracers in seawater.