83 resultados para Plauto, Tito Maccio, ca. 251-ca. 184 a. C.


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Instrumental climate observations provide robust records of global land and ocean temperatures during the twentieth century. Unlike for temperature, continuous salinity observations in the surface ocean are scarce prior to 1970, and the magnitude of salinity changes during the twentieth century is largely unknown. Surface ocean salinity is a major component in climate dynamics, as it influences ocean circulation and water mass formation. Here we present an annually resolved reconstruction of salinity variations in the surface waters of the western subtropical North Pacific Ocean since 1873, based on bimonthly records of d18O, Sr/Ca, and U/Ca in a coral from the Ogasawara Islands. The reconstruction indicates that an abrupt regime shift toward fresher surface ocean conditions occurred between 1905 and 1910. Observational atmospheric data suggest that the abrupt freshening was associated with a weakening of the winds that drive the Kuroshio Current system and the associated subtropical gyre circulation. We note that the abrupt early-twentieth-century freshening in the western subtropical North Pacific precedes abrupt climate change in the northern North Atlantic by a few years. The potential for abrupt regime shifts in surface ocean salinity should be considered in climate predictions for the coming decades.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Changes in the local freshwater budget over the last 22,000 years have been estimated from a sediment core located in the southern South China Sea (SCS) using a combined approach of Mg/Ca and oxygen isotopes on the planktonic foraminifera Globigerinoides ruber (white) sensu stricto (s.s.). Core MD01-2390 (06°28,12N, 113°24,56E; water depth 1591 m) is located near the glacial paleo-river mouths of the Baram, Rajang and North Sunda/Molengraaff Rivers that drained the exposed Sunda Shelf. The delta18Oseawater record reveals lower average values (-0.96±0.18 per mil) during the Last Glacial Maximum (LGM) when compared with modern values (-0.54±0.18 per mil). Low salinity during the LGM is interpreted to reflect a higher freshwater contribution due to a greater proximity of the core site to the mouths of the Baram, Rajang and North Sunda/Molengraaff Rivers at that time. A general deglacial increasing trend in salinity due to the progressive landward displacement of the coastline during deglacial shelf flooding is punctuated by several short-term shifts towards higher and lower salinity that are likely related to abrupt changes in the intensity of the East Asian summer monsoon. Thus, the deglacial delta18Oseawater changes reflect the combined effects of sea-level-induced environmental changes on the shelf (e.g. phases of retreat and breakdown of the shelf drainage systems) and East Asian monsoon climate change. Lower salinity than at present during the Early Holocene may be attributed to an increase in summer monsoonal precipitation that is corroborated by previous marine and terrestrial studies that report a Preboreal-Early Holocene monsoon optimum in the Asian monsoon region.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

High resolution planktonic foraminifera Mg/Ca paleotemperatures and oxygen isotopes of seawater of Ocean Drilling Program (ODP) Site 1078 (off Angola) have been reconstructed and reveal insights into the seasonal thermal evolution of the Angola Current (AC), the Angola-Benguela Front (ABF), and the Benguela Current (BC) during the last glacial (50-23.5 ka BP). Special emphasis is put on time intervals possibly associated with the North Atlantic Heinrich Stadials (HS), which are thought to lead to an accumulation of heat in the South Atlantic due to a reduction of the Atlantic Meridional Overturning Circulation (AMOC). Within dating uncertainties, Globigerinoides ruber (pink) Mg/Ca-based sea surface temperature (SST) estimates that represent southern hemisphere summer surface conditions show several warming episodes that coincide with North Atlantic HS, thus supporting the concept of the bipolar thermal seesaw. In contrast, the Mg/Ca-based temperatures of Globigerina bulloides, representing the SST of the ABF/BC system during southern hemisphere winter, show no obvious response to the North Atlantic HS in the study area. We suggest that surface water cooling during the winter season is due to enhanced upwelling or upwelling of colder water masses which has most likely mitigated a warming of the ABF/BC system during HS. We further speculate that the seasonal asymmetry in our SST record results from seasonal differences in the dominance of atmospheric and oceanic teleconnections during periods of northern high latitude cooling.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater d18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30'S, 100°08'E, and GeoB 10038-4, 5°56'S, 103°15'E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2-3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater d18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater ?18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling-Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The end of the last interglacial period, ~118 kyr ago, was characterized by substantial ocean circulation and climate perturbations resulting from instabilities of polar ice sheets. These perturbations are crucial for a better understanding of future climate change. The seasonal temperature changes of the tropical ocean, however, which play an important role in seasonal climate extremes such as hurricanes, floods and droughts at the present day, are not well known for this period that led into the last glacial. Here we present a monthly resolved snapshot of reconstructed sea surface temperature in the tropical North Atlantic Ocean for 117.7±0.8 kyr ago, using coral Sr/Ca and d18O records. We find that temperature seasonality was similar to today, which is consistent with the orbital insolation forcing. Our coral and climate model results suggest that temperature seasonality of the tropical surface ocean is controlled mainly by orbital insolation changes during interglacials.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Two SST records based on Mg/Ca of G. ruber (pink) from the continental slope off West Africa at 15°N and 12°N shed new light on the thermal bipolar seesaw pattern in the northeastern tropical Atlantic during periods of reduced Atlantic Meridional Overturning Circulation (AMOC) associated with Heinrich stadials H1 to H6. The two records indicate that the latitudinal position of the bipolar seesaw's zero-anomaly line, between cooling in the North and warming in the South, gradually shifted southward from H6 to H1. A conceptual model is presented that aims to provide a physically consistent mechanism for the southward migration of the seesaw's fulcrum. The conceptual model suggests latitudinal movements of the Intertropical Convergence Zone, driven by a combination of orbital-forced changes in the meridional temperature gradient within the realm of the Hadley cell and the expansion of the Northern Hemisphere cryosphere, as a major factor.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Constraining the magnitude of high-latitude temperature change across the Eocene-Oligocene transition (EOT) is essential for quantifying the magnitude of Antarctic ice-sheet expansion and understanding regional climate response to this event. To this end, we constructed high-resolution stable oxygen isotope (d18O) and magnesium/calcium (Mg/Ca) records from planktic and benthic foraminifera at four Ocean Drilling Program (ODP) sites in the Southern Ocean. Planktic foraminiferal Mg/Ca records from the Kerguelen Plateau (ODP Sites 738, 744, and 748) show a consistent pattern of temperature change, indicating 2-3 °C cooling in direct conjunction with the first step of a two-step increase in benthic and planktic foraminiferal d18O values across the EOT. In contrast, benthic Mg/Ca records from Maud Rise (ODP Site 689) and the Kerguelen Plateau (ODP Site 748) do not exhibit significant temperature change. The contrasting temperature histories derived from the planktic and benthic Mg/Ca records are not reconcilable, since vertical d18O gradients remained nearly constant at all sites between 35.0 and 32.5 Ma. Based on the coherency of the planktic Mg/Ca records from the Kerguelen Plateau sites and complications with benthic Mg/Ca paleothermometry at low temperatures, the planktic Mg/Ca records are deemed the most reliable measure of Southern Ocean temperature change. We therefore interpret a uniform cooling of 2-3 °C in both deep surface (thermocline) waters and intermediate deep waters of the Southern Ocean across the EOT. Cooling of Southern Ocean surface waters across the EOT was likely propagated to the deep ocean, since deep waters were primarily sourced on the Antarctic margin throughout this time interval. Removal of the temperature component from the observed foraminiferal d18O shift indicates that seawater d18O values increased by 0.6 ± 0.15 per mil across the EOT interval, corresponding to an increase in global ice volume to a level equivalent with 60-130% modern East Antarctic ice sheet volume.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The glacial marine isotope stage 14 (MIS 14) appears in many climate records as an unusually warm glacial. During this period an almost monospecific, up to 1.5 m thick, laminated layer of the giant diatom Ethmodiscus rex has been deposited below the South Atlantic Subtropical Gyre. This oligotrophic region is today less favorable for diatom growth with sediments typically consisting of calcareous nannofossil oozes. We have reconstructed temperatures and the stable oxygen isotopic compositions of sea surface and thermocline water (d18Ow) from planktonic foraminiferal (Globigerinoides ruber and Globorotalia inflata) Mg/Ca and stable oxygen isotopes to test whether perturbations in surface ocean conditions contributed to the deposition of the diatom layer at ~530 kyr B.P. Temperatures and d18Ow values reconstructed from this diatom ooze interval are highly variable, with maxima similar to interglacial values. Since the area of the Ethmodiscus oozes resembles the region where Agulhas rings are present, we interpret these hydrographic changes to reflect the varying influence of warm and saline water of Indian Ocean origin that entered the Subtropical Gyre trapped in Agulhas rings. The formation of the Ethmodiscus oozes is associated with a period of maximum Agulhas leakage and a maximum frequency of Agulhas ring formation caused by a termination-type position of the Subtropical Front during the unusual warm MIS 14. The input of silica through the Agulhas rings enabled the shift in primary production from calcareous nannoplankton to diatoms, leading to the deposition of the massive diatom oozes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The importance of intermediate water masses in climate change and ocean circulation has been emphasized recently. In particular, Southern Ocean Intermediate Waters (SOIW), such as Antarctic Intermediate Water and Subantarctic Mode Water, are thought to have acted as active interhemispheric transmitter of climate anomalies. Here we reconstruct changes in SOIW signature and spatial and temporal evolution based on a 40 kyr time series of oxygen and carbon isotopes as well as planktic Mg/Ca based thermometry from Site GeoB12615-4 in the western Indian Ocean. Our data suggest that SOIW transmitted Antarctic temperature trends to the equatorial Indian Ocean via the "oceanic tunnel" mechanism. Moreover, our results reveal that deglacial SOIW carried a signature of aged Southern Ocean deep water. We find no evidence of increased formation of intermediate waters during the deglaciation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Shell chemistry of planktic foraminifera and the alkenone unsaturation index in 69 surface sediment samples in the tropical eastern Indian Ocean off West and South Indonesia were studied. Results were compared to modern hydrographic data in order to assess how modern environmental conditions are preserved in sedimentary record, and to determine the best possible proxies to reconstruct seasonality, thermal gradient and upper water column characteristics in this part of the world ocean. Our results imply that alkenone-derived temperatures record annual mean temperatures in the study area. However, this finding might be an artifact due to the temperature limitation of this proxy above 28°C. Combined study of shell stable oxygen isotope and Mg/Ca ratio of planktic foraminifera suggests that Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), and G. sacculifer calcify within the mixed-layer between 20 m and 50 m, whereas Globigerina bulloides records mixed-layer conditions at ~50 m depth during boreal summer. Mean calcifications of Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia tumida occur at the top of the thermocline during boreal summer, at ~75 m, 75-100 m, and 100 m, respectively. Shell Mg/Ca ratios of all species show a significant correlation with temperature at their apparent calcification depths and validate the application of previously published temperature calibrations, except for G. tumida that requires a regional Mg/Ca-temperature calibration (Mg/Ca = 0.41 exp (0.068*T)). We show that the difference in Mg/Ca-temperatures of the mixed-layer species and the thermocline species, particularly between G. ruber s.s. (or s.l.) and P. obliquiloculata, can be applied to track changes in the upper water column stratification. Our results provide critical tools for reconstructing past changes in the hydrography of the study area and their relation to monsoon, El Niño-Southern Oscillation, and the Indian Ocean Dipole Mode.