45 resultados para Pikillacta Site (Peru)
Resumo:
High-resolution records of d18O and relative abundances of planktonic foraminifers were generated for ODP Leg 138 Site 846 for the past 800 k.y., with an average sampling interval of 3.6 k.y. The time scale was constructed by correlating the benthic d18O record to the SPECMAP and ODP Site 677 d18O time scales using the mapping function technique of Martinson et al. (1981). Our observations show that variations in the foraminiferal assemblages, although influenced by dissolution, are interpretable in terms of changing characteristics of upper ocean waters. Carbonate dissolution as indicated by fragmentation of planktonic foraminifers shows concentrated variance that is coherent with d18O at the 100 and 41 k.y. orbital periods. At these periods, maximum dissolution occurs during interglacial extremes. This finding differs from previous studies that have indicated that in this region percent carbonate minimum lags global ice volume minimum. N. dutertrei and dextral N. pachyderma dominate the assemblages, but do not show consistent relationships relative to glacial-interglacial cycles. However, less abundant species G. ruber, G. menardii, G. glutinata and G. sacculifer show positive and G. bulloides negative correlation with the d18O record. Q-mode factor analysis of the Site 846 assemblages and comparison with modern assemblages suggest the following. Prior to and during interglacials, the area was considerably warmer and more subtropical than at present; during glacials, the area was colder than at present with greater upwelling and advection off the eastern boundary, and possibly a stronger Peru Current; the equatorial ôcool tongueö was also possibly stronger.
Resumo:
Deep-sea sediment samples from three Ocean Drilling Program (ODP) Leg 112 sites on the Peru continental margin were investigated, using a number of organic geochemical and organic petrographic techniques, for amounts and compositions of the organic matter preserved. Preliminary results include mass accumulation rates of organic carbon at Site 679 and characteristics of the organic facies for sediments from Sites 679, 681, and 684. Organic-carbon contents are high, with few exceptions. Particularly high values were determined in the Pliocene interval at Site 684 (4%-7.5%) and in the early Pliocene to Quaternary section of Hole 679D (2%-9%). Older sediments at this site have distinctively lower organic-carbon contents (0.2%-2.5%). Mass accumulation rates of organic matter at Site 679 are 0.02 to 0.07 g carbon/cm**2/k.y. for late Miocene to early Pliocene sediments and higher by a factor of 5 to 10 in the Quaternary sediments. The organic matter in all samples has a predominantly marine planktonic and bacterial origin, with minor terrigenous contribution. Organic particle sizes are strikingly small, so that only a minor portion is covered by visual maceral analysis. Molecular organic-geochemical data were obtained for nonaromatic hydrocarbons, aromatic hydrocarbons (including sulfur compounds), alcohols, ketones, esters, and carboxylic acids. Among the total extractable lipids, long-chain unsaturated ketones from Prymnesiophyte algae strongly predominate among the gas chromatography (GC) amenable components. Steroids are major constituents of the ketone and free- and bound-alcohol fractions. Perylene is the most abundant aromatic hydrocarbon, whereas in the nonaromatic hydrocarbon fractions, long-chain n-alkanes from higher land plants predominate, although the total terrigenous organic matter proportion in the sediments is small.
Resumo:
We have measured the concentrations of (1) pore-water sulfide and (2) solid-phase pyrite, iron monosulfide (=acid volatile sulfide), elemental sulfur, and extractable and nonextractable organic ("kerogen") sulfur in sediments from Ocean Drilling Program (ODP) Sites 680 and 686. Pore-water sulfide defines classic "bell-shaped" profiles. Maximum concentrations of 6 to 12 mM occur where sulfate is exhausted, or is most depleted, at depths between 15 and 50 mbsf. Sulfide resulting from bacterial sulfate reduction reacts in three ways: (1) some is reoxidized to elemental sulfur in surface sediments; (2) some reacts with detrital iron minerals to form iron monosulfide and pyrite, primarily in the top meter or two of the sediment; and (3) some reacts with, and is incorporated into, kerogen. Incorporation of reduced sulfur into kerogen occurs over the top 15 m of the sediment at both Sites 680 and 686, after the main phase of pyrite formation. Up to 45% of the total sedimentary sulfur is organically bound, and concentrations of 12 wt% sulfur are reached in the kerogen. These values are like those measured in lithologically similar, but more deeply buried, sediments from the Monterey Formation.
Resumo:
Glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are part of the cellular membranes of Thaumarchaeota, an archaeal phylum composed of aerobic ammonia oxidizers, and are used in the paleotemperature proxy TEX86. GDGTs in live cells possess polar head groups and are called intact polar lipids (IPL-GDGTs). Their transformation to core lipids (CL) by cleavage of the head group was assumed to proceed rapidly after cell death but it has been suggested that some of these IPL-GDGTs can, just like the CL-GDGTs, be preserved over geological timescales. Here, we examined IPL-GDGTs in deeply buried (0.2-186 mbsf, ~2.5 Myr) sediments from the Peru Margin. Direct measurements of the most abundant IPL-GDGT, IPL-crenarchaeol, specific for Thaumarchaeota, revealed depth profiles which differed per head group. Shallow sediments (<1 mbsf) contained IPL-crenarchaeol with both glycosidic- and phosphate headgroups, as also observed in thaumarchaeal enrichment cultures, marine suspended particulate matter and marine surface sediments. However, hexose, phosphohexose-crenarchaeol is not detected anymore below 6 mbsf (~7 kyr), suggesting a high lability. In contrast, IPL-crenarchaeol with glycosidic head groups is preserved over time scales of Myr. This agrees with previous analyses of deeply buried (>1 m) marine sediments, which only reported glycosidic and no phosphate-containing IPL-GDGTs. TEX86 values of CL-GDGTs did not markedly change with depth, and the TEX86 of IPL-derived GDGTs decreased only when the proportions of monohexose- to dihexose-GDGTs changed, likely due to the enhanced preservation of the monohexose GDGTs. Our results support the hypothesis that in situ GDGT production and differential IPL degradation in sediments is not substantially affecting TEX86 paleotemperature estimations based on CL GDGTs and indicate that likely only a small amount of IPL-GDGTs present in deeply buried sediments is part of cell membranes of active Archaea. The amount of archaeal biomass in the deep biosphere based on these IPLs may have been substantially overestimated.