38 resultados para Phaeophyceae
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
We surveyed macroalgae at Hansneset, Blomstrand in Kongsfjorden, Svalbard, down to 30 m depth between 1996 and 1998. In total, 62 species were identified: 16 Chlorophyta, 25 Phaeophyceae, and 21 Rhodophyta. The majority of species (53.5%) belonged to the Arctic cold-temperate group, followed in frequency by species distributed from the Arctic to the warm-temperate region (25.9%). Four endemic Arctic species (Laminaria solidungula, Acrosiphonia flagellata, A. incurva, and Urospora elongata) were found. Two species (Pogotrichum filiforme and Mikrosyphar polysiphoniae) were new to Svalbard. Chlorophyta, Phaeophyceae, and Rhodophyta extended from the eulittoral zone down to 11, 21, and >30 m depths with maximum biomasses at 1-5 m, 5-10 m, and 5-30 m depths, respectively. Annual and pseudoperennial species had highest biomasses in the upper 5 m, while perennials were distributed deeper. The highest biomass (8600 g/m**2 wet weight) at 5 m depth comprised mainly L. digitata, Saccorhiza dermatodea, Alaria esculenta, and Saccharina latissima. The biogeographic composition of macroalgae at Hansneset was rather similar to that of northeastern Greenland, but different from that of northern Norway, which has a higher proportion of temperate species. Climate warming and ship traffic may extend some of the distribution ranges of macroalgae from mainland Norway to Svalbard.
Resumo:
During summer 2014 (mid-July - mid-September 2014), early life-stage Fucus vesiculosus were exposed to combined ocean acidification and warming (OAW) in the presence and absence of enhanced nutrient levels (OAW x N experiment). Subsequently, F. vesiculosus germlings were exposed to a final upwelling disturbance during 3 days (mid-September 2014). Experiments were performed in the near-natural scenario "Kiel Outdoor Benthocosms" including natural fluctuations in the southwestern Baltic Sea, Kiel Fjord, Germany (54°27 'N, 10°11 'W). Genetically different sibling groups and different levels of genetic diversity were employed to test to which extent genetic variation would result in response variation. The data presented here show the phenotypical response (growth and survival) of the different experimental populations of F. vesiculosus under OAW, nutrient enrichment and the upwelling event. Log effect ratios demonstrate the responses to enhanced OAW and nutrient concentrations relative to the ambient conditons. Carbon, nitrogen content (% DW) and C:N ratios were measured after the exposure of ambient and high nutrient levels. Abiotic conditions the OAW x nutrient experiment and the upwelling event, are shown.