520 resultados para Pacific Island
Resumo:
Biogenic opal concentrations were measured on bulk sediments recovered at Ocean Drilling Program Sites 1123, 1124, and 1125 off North Island of New Zealand in the southwest Pacific. Site 1124 showed opal contents ranging from approximately 2 to 8 wt%, which is relatively high compared to other sites. The subbottom maximum in biogenic opal content located between 1.0 and 1.5 m composite depth can be recognized at each site. Patterns of biogenic opal content in the uppermost parts of the cores appear to reflect the surface ocean settings relating to the migration of the Subtropical Convergence Zone.
Resumo:
Modern microbial mats are widely recognized as useful analogs for the study of biogeochemical processes relevant to paleoenvironmental reconstruction in the Precambrian. We combined microscopic observations and investigations of biomarker composition to investigate community structure and function in the upper layers of a thick phototrophic microbial mat system from a hypersaline lake on Kiritimati (Christmas Island) in the Northern Line Islands, Republic of Kiribati. In particular, an exploratory incubation experiment with 13C-labeled bicarbonate was conducted to pinpoint biomarkers from organisms actively fixing carbon. A high relative abundance of the cyanobacterial taxa Aphanocapsa and Aphanothece was revealed by microscopic observation, and cyanobacterial fatty acids and hydrocarbons showed 13C-uptake in the labeling experiment. Microscopic observations also revealed purple sulfur bacteria (PSB) in the deeper layers. A cyclic C19:0 fatty acid and farnesol were attributed to this group that was also actively fixing carbon. Background isotopic values indicate Calvin-Benson cycle-based autotrophy for cycC19:0 and farnesol-producing PSBs. Biomarkers from sulfate-reducing bacteria (SRB) in the top layer of the mat and their 13C-uptake patterns indicated a close coupling between SRBs and cyanobacteria. Archaeol, possibly from methanogens, was detected in all layers and was especially abundant near the surface where it contained substantial amounts of 13C-label. Intact glycosidic tetraether lipids detected in the deepest layer indicated other archaea. Large amounts of ornithine and betaine bearing intact polar lipids could be an indicator of a phosphate-limited ecosystem, where organisms that are able to substitute these for phospholipids may have a competitive advantage.
Resumo:
Six deep sea cores from the eastern equatorial Pacific (EEP) were analyzed for planktonic foraminifera and stable isotopes in order to reconstruct sea surface temperatures (SST) for the last 40 ka. South of the Equatorial Front the abundance of Globorotalia inflata increased, and SST decreased by >5°C (core ODP846B), creating a stronger SST meridional gradient and advection of the Peru Current than present for the ~16-35 ka interval. A sharper SST meridional gradient forced stronger Choco jet events and a moisture increase in western Colombia, which supplied, through the San Juan River and the south-flowing equatorial and the Peru-Chile countercurrents, abundant hemipelagic quartz over the northern Peru basin (core TR163-31B). The Choco jet, and its associated mesoscale convective cells, provoked an increase in snow precipitation over the Central Cordillera of Colombia and the advance of the Murillo glacier. In synchrony with the intensified Choco jet events, the "dry island" effect over the Eastern Cordillera of Colombia intensified, and the level of Fuquene Lake dropped.
Resumo:
Biological productivity in the modern equatorial Pacific Ocean, a region with high nutrients and low chlorophyll, is currently limited by the micronutrient Fe. In order to test whether Fe was limiting in the past and to identify potential pathways of Fe delivery that could drive Fe fertilization (i.e., dust delivery from eolian inputs vs. Fe supplied by the Equatorial Undercurrent), we chemically isolated the terrigenous material from sediment along a cross-equatorial transect in the central equatorial Pacific at 140°W and at Ocean Drilling Program Site 850 in the eastern equatorial Pacific. We quantified the contribution from each potential Fe-bearing terrigenous source using a suite of chemical- and isotopic discrimination strategies as well as multivariate statistical techniques. We find that the distribution of the terrigenous sources (i.e., Asian loess, South American ash, Papua New Guinea, and ocean island basalt) varies through time, latitude, and climate. Regardless of which method is used to determine accumulation rate, there also is no relationship between flux of any particular Fe source and climate. Moreover, there is no connection between a particular Fe source or pathway (eolian vs. Undercurrent) to total productivity during the Last Glacial Maximum, Pleistocene glacial episodes, and the Miocene "Biogenic Bloom". This would suggest an alternative process, such as an interoceanic reorganization of nutrient inventories, may be responsible for past changes in total export in the open ocean, rather than simply Fe supply from dust and/or Equatorial Undercurrent processes. Additionally, perhaps a change in Fe source or flux is related to a change in a particular component of the total productivity (e.g., the production of organic matter, calcium carbonate, or biogenic opal).
Resumo:
Ocean Drilling Program (ODP) Site 1119 is located at water depth 395 m near the subtropical front (STF; here represented by the Southland Front), just downslope from the shelf edge of eastern South Island, New Zealand. The upper 86.19 metres composite depth (mcd) of Site 1119 sediment was deposited at an average sedimentation rate of 34 cm/kyr during Marine Isotope Stages (MIS) 1-8 (0-252 ka), and is underlain across a ~25 kyr intra-MIS 8 unconformity by MIS 8.5-11 (277-367 ka) and older sediment deposited at ~14 cm/kyr. A time scale is assigned to Site 1119 using radiocarbon dates for the period back to ~39 ka, and, prior to then, by matching its climatic record with that of the Vostok ice core, which it closely resembles. Four palaeoceanographic proxy measures for surface water masses vary together with the sandy-muddy, glacial-interglacial (G/I) cyclicity at the site. Interglacial intervals are characterised by heavy delta13C, high colour reflectance (a proxy for carbonate content), low Q-ray (a proxy for clay content) and light delta18O; conversely, glacial intervals exhibit light delta13C, low reflectance, high Q-ray and heavy delta18O signatures. Early interglacial intervals are represented by silty clays with 10-105-cm-thick beds of sharp-based (Chondrites-burrowed), shelly, graded, fine sand. The sands are rich in foraminifera, and were deposited distant from the shoreline under the influence of longitudinal flow in relatively deep water. Glacial intervals comprise mostly micaceous silty clay, though with some thin (2-10 cm thick) sands present also at peak cold periods, and contain the cold-water scallop Zygochlamys delicatula. Interglacial sandy intervals are characterised by relatively low sedimentation rates of 5-32 cm/kyr; cold climate intervals MIS 10, 6 and 2 have successively higher sedimentation rates of 45, 69 and 140 cm/kyr. Counter-intuitively,and forced by the bathymetric control of a laterally-moving shoreline during G/I and I/G transitions, the 1119 core records a southeasterly (seaward) movement of the STF during early glacial periods, accompanied by the incursion of subtropical water (STW) above the site, and northwesterly (landward) movement during late glacial and interglacial times, resulting in a dominant influence then of subantarctic surface water (SAW). The history of passage of these different water masses at the site is clearly delineated by their characteristic delta13C values. The intervals of thin, graded sands-muds which occur within MIS 2-3, 6, 7.4 and 10 indicate the onset at times of peak cold of intermittent bottom currents caused by strengthened and expanded frontal flows along the STF, which at such times lay near Site 1119 in close proximity to seaward-encroaching subantarctic waters within the Bounty gyre. In common with other nearby Southern Hemisphere records, the cold period which represents the last glacial maximum lasted between ~23-18 ka at Site 1119, during which time the STF and Subantarctic Front (SAF) probably merged into a single intense frontal zone around the head of the adjacent Bounty Trough.
Resumo:
The late Quaternary sequence off eastern South Island, New Zealand, consists of ~100 m of alternating bluish gray pelagic oozes and greenish gray hemipelagic oozes that extend uninterruptedly back to the Brunhes/Matuyama boundary (0.73 m.y.). A very high resolution (~2400 yr.) record of sediment texture, calcium carbonate content, and planktonic and benthic foraminiferal oxygen and carbon isotope composition demonstrates an in-phase cyclical fluctuation between the sedimentary parameters that closely correspond to the pelagic-hemipelagic sedimentation cycles and the isotope composition. Pelagic oozes, formed during interglacial periods of high eustatic sea level, are characterized by calcareous microfossils, relative enrichment in sand and clay sizes, high carbonate contents, reduced delta18O values, and increased delta13C values. Hemipelagic oozes, associated with glacial episodes and lowered eustatic sea level, include common terrigenous material and siliceous microfossils, are enriched in silt sizes, have low carbonate contents, high delta18O values, and low delta13C values. The history of alpine glaciations and associated erosion of the South Island of New Zealand, as expressed by the appearance of hemipelagic oozes, can be correlated directly with the major fluctuations of Northern Hemisphere ice sheets as expressed by the influence of eustatic sea-level changes on the oxygen isotope composition of both planktonic and benthic foraminifers. This high-accumulation-rate record contains conspicuous intervals of highfrequency, high-amplitude isotope variability including the presence of multiple glacial/interglacial intervals within single isotope stages, and offers one of the best sections cored to date for detailed study of the evolution and history of climate change over the last 0.75 m.y.
Resumo:
The east coast of the AP is highly influenced by cold and dry air masses stemming from the adjacent Weddell Sea. By the contrary, the west coast jointly with the South Shetland Islands are directly exposed to the humid and relatively warm air masses from the South Pacific Ocean carried by the strong and persistent westerly winds. Systematic glaciological field studies are very scarce on both sides of the AP, among them can be mentioned a mass-balance program performed continuously since summer 1998/99 by the Instituto Antártico Argentino (IAA) on Vega Island, James Ross Archipelago, on the northeastern flank of the AP. Another continuous plurianual glaciological research has been initiated in 2010 jointly by the University of Bonn and the IAA at the Fourcade Glacier on King George Island (KGI) within the framework of the ESF project IMCOAST (FK 03F0617B). Two transects of mass balance stakes were installed from the top of the Warszawa Ice Dome down to the border of the glaciers Fourcade and Polar Club, to serve for calibration and validation of modeling efforts. The stakes were measured at the beginning and end of each summer field campaign in November 2010, February - March 2011, January - March 2012, and especially during the austral winter 2012 up to March 2013 every 10 to 14 days depending on weather conditions. During the austral winter 2013 and until June 2014 the measurements were conducted every 20 to 30 days, weather permitting. Snow density was measured as well in every field trip from June 2012 until June 2104, establishing a rather homogeneous value along the different parts of the glacier. Snow density in late summer, rho_s is usually higher than the one in late winter, rho_w. Seasonal average values were calculated for the area covered by the mass balance stakes, being rho_s= 471 Kg/m**3 and rho_w = 363 Kg/m**3.
Resumo:
Data are presented on concentration of dissolved organic carbon and particulate organic nitrogen in sea water at four stations, and also of dissolved and particulate amino acids at a deep-sea station above the Japan Trench. Concentration of Corg ranged from 0.79 to 2.00 mg/l, reaching maximum in the upper productive layers, while that of particulate Norg varied from 0.0018 to 0.037 mg/l, the maximum being in the upper layer (0-100 m). Water and particulate matter contained 18 amino acids in concentrations varying from 0.150 to 0.177 mg/l in the former and from 0.010 to 0.048 mg/l in the latter. Amino acid composition is variable. Vertical distribution of dissolved Corg and particulate Norg, as well as of dissolved and particulate amino acids is greatly dependent on water dynamics.
Resumo:
A brief review of various relationships connecting seismofocal zone and volcanic belts within the Kurile island-arc system is represented. Possibilities of manifestation of the submarine volcanic activity and associated relief of the hydrothermal systems on the Pacific shelf of the South Kamchatka are considered. We propose to consider Malko-Petropavlovsk zone of transverse dislocations as seismogenerating one. The phenomenon of ultrafast deformations.