52 resultados para Organic input


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the ARCTIC '91-Expedition with RV 'Polarstern', several Multicorer and Kastenlot-cores were recovered along a profile crossing the eastern part of the Arctic Ocean. The investigated cores consist mainly of clayey-silty sediments, and some units with a higher sand content. In this thesis, detailed sedimentological and organic-geochemical investigations were performed. In part, the near surface sediments were AMS-14C dated making it possible to Interpret the results of the organic-geochemical investigations in terms of climatic changes (isotopic stage 2 to the Holocene). The more or less absence of foraminifers within the long cores prevented the development of an oxygen isotope stratigraphy. Only the results of core PS2174-5 from the Amundsen-Basin could be discussed in terms of the climatic change that could be dated back to oxygen isotope stage 7. Detailed organic-geochemical investigations in the central Arctic Ocean are rare. Therefore, several different organic-geochemical methods were used to obtain a wide range of data for the Interpretation of the organic matter. The high organic carbon content of the surface sediments is derived from a high input of terrigenous organic matter. The terrigenous organic material is most likely entrained within the sea-ice On the Siberian shelves and released during ice-drift over the Arctic Ocean. Other factors such as iceberg-transport and turbidites are also responsible for the high input of terrigenous organic matter. Due to the more or less closed sea-ice Cover, the Arctic Ocean is known as a low productivity system. A model shows, that only 2 % of the organic matter in central Arctic Ocean sediments is of a marine origin. The influence of the West-Spitsbergen current increases the marine organic matter content to 16 %. Short chain n-alkanes (C17 and C19) can be used as a marker of marine productivity in the Arctic Ocean. Higher contents of short chain n-alkanes exist in surface sediments of the Lomonosov-Ridge and the Makarov-Basin, indicating a higher marine productivity caused by a reduced sea-ice Cover. The Beaufort-Gyre and Transpolar-Drift drift Patterns could be responsible for the lower sea-ice distribution in this region. The sediments of Stage 2 and Stage 3 in this region are also dominated by a higher content of short chain-nalkanes indicating a comparable ice-drift Pattern during that time. The content and composition of organic carbon in the sediments of core PS2174-5 reflect glaciallinterglacial changes. Interglacial stages 7 and 5e show a low organic carbon content (C 0,5 %) and, as indicated by high hydrogen-indices, low CIN-ratios, higher content of n-alkanes (C17 and C19) and a higher opal content, a higher marine productivity. In the Holocene, a high content of foraminifers, coccoliths, ostracodes, and sponge spicules indicate higher surface-water productivity. Nevertheless, the low hydrogenindices reveal a high content of terrigenous organic matter. Therefore, the Holocene seems to be different from interglacials 7 and 5e. During the glacial periods (stages 6, upper 5, and 4), TOC-values are significantly higher (0.7 to 1.3 %). In addition, low hydrogen-indices, high CIN-ratios, low short chain n-alkanes and opal contents provide evidence for a higher input of terrigenous organic matter and reduced marine productivity. The high lignin content in core sections with high TOC-contents, substantiates the high input of terrigenous organic matter. Changes in the content and composition of the organic carbon is believed to vary with the fluctuations in sea-level and sea-ice coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment samples from the Laptev Sea, taken during the 1993 RV Polarstern expedition ARK IX/4 and the RV Ivan Kireyev expedition TRANSDRIFT I, were investigated for the amount and composition of their organic carbon fractions. Of major interest was the identification of different processes controlling organic carbon deposition (i.e. terrigenous supply vs. surface water productivity). Long-chain unsaturated alkenones derived from prymnesiophytes, and fatty acids derived from diatoms and dinoflagellates, were analysed by means of gas chromatography and mass spectrometry. First results on the distribution of these biomarkers in surface sediments indicate that the surface water productivity signal is well preserved in the sediment data. This is shown by the distribution of the 16:1(n-7) and 20:5(n-3) fatty acids indicative for diatoms, and the excellent correlation with the chlorophyll a concentrations in the surface water masses and the biogenic-opal content and increased hydrogen indices of the sediments. The high concentration of these unsaturated fatty acids in shallow water sediments shows the recent deposition of the organic material. In deep-sea sediments, on the other hand, the concentrations are low. This decreased content is typical for phytoplankton material which has been degraded by microorganisms or autoxidation. In general, the alkenone concentrations are very low, suggesting low production rates by prymnesiophytes. Only at one station from the lower continental margin influenced by the inflow of Atlantic water masses, were some higher amounts of alkenones determined. Long-chain n-alkanes as well as high C/N ratios and low hydrogen indices indicate the importance of (fluvial) supply of terrigenous organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied variations in terrigenous (TOM) and marine organic matter (MOM) input in a sediment core on the northern Barents Sea margin over the last 30 ka. Using a multiproxy approach, we reconstructed processes controlling organic carbon deposition and investigated their paleoceanographic significance in the North Atlantic-Arctic Gateways. Variations in paleo-surface-water productivity are not documented in amount and composition of organic carbon. The highest level of MOM was deposited during 25-23 ka as a result of scavenging on fine-grained, reworked, and TOM-rich material released by the retreating Svalbard/Barents Sea ice sheet during the late Weichselian. A second peak of MOM is preserved because of sorptive protection by detrital and terrigenous organic matter, higher surface-water productivity due to permanent intrusion of Atlantic water, and high suspension load release by melting sea ice during 15.9-11.2 ka.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two main mechanisms are controlling the accumulation of organic matter in the sediments of the Kara Sea. The large rivers Ob and Yenisei supply significant quantities of freshwater onto the shelf (Lisitsyn and Vinogradov, 1995; Bobrovitskaya et al., 1996; Johnson et al., 1997) and deliver terrigenous organie matter and aquatic algae. Additionally, marine organic matter is produced in the water column. In order to distinguish between the different sources of the organic material maceral analysis, organic-geochemical bulk Parameters and biomarkers (short- and long-chain D-alkanes, fatty acids and pigments) were used to determine the quality (marine vs. terrigenous) and quantity of the organic carbon fraction in the surface sediments taken during the 28th cruise of RV Akademik Boris Petrov (Matthiessen and Stepanets, 1998) (Fig. 1). Previous organic-geochemical investigations (i.e., total organic-carbon content (TOC), hydrogen indices (Hl), CIN-ratios) indicate the importance of terrigenous input of organic matter (Galimov et al., 1996; Stein, 1996). Studies of lipid biomarkers in surface sediments in the Ob estuary show also a predominance of terrestrial constituents and an increase in planktonogenic and bacterial lipids further offshore (Belyaeva and Eglinton, 1997). In complex systems such as the Eurasian continental margin characterized by high input of terrestriallaquatic organic matter and strong seasonal variation in sea-ice Cover and primary productivity, the Interpretation of the organic geochemical data is much more complicated and restricted in comparison to similar data Sets from low-latitude open-ocean environments (Fahl and Stein, 1998). Microscopical studies (maceral analysisl palynology), however, allow a direct visual inspection of the particulate organic matter and allow to differentiate particles of different biological sources. Thus, a combination of both methods as shown in this study, yields a more precise identification of organic-carbon sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Quaternary sediments recovered in a core from the area of the Zaire Fan, Central Africa, were analyzed for clay mineral composition in order to reconstruct fluctuations in the sediment input and freshwater discharge of the Zaire River. Clay mineral assemblages are dominated by kaolinite and smectite, which both originate mainly from the Zaire River and contain only minor contributions of eolian dust. Smectite crystallinity and chemical character of illites (Fe, Mg- or Al-rich) are used to track sediment input from the Zaire River and assess fluctuations in the freshwater discharge. Both parameters record a high-latitude forcing of river runoff at 100 ka periodicities reflecting glacial aridity and increased runoff during interglacials 1, 5 and 7. This signal is also observed in kaolinite/smectite ratios which represent the extension and intensity of the freshwater plume of the Zaire River. Clay mineral proxies reveal that river discharge and associated sediment input fluctuated in tune with precessional cycles of African monsoon intensity. Increased eolian input of kaolinite-rich dust with intensified northeast trades during glacials flattens the precessional signal in kaolinite/smectite ratios.