32 resultados para Orcinus-orca
Resumo:
Constraining variations in marine N2-fixation over glacial-interglacial timescales is crucial for determining the role of the marine nitrogen cycle in modifying ocean productivity and climate, yet paleo-records from N2-fixation regions are sparse. Here we present new nitrogen isotope (d15N) records of bulk sediment and foraminifera test-bound (FB) nitrogen extending back to the last ice age from the oligotrophic Gulf of Mexico (GOM). Previous studies indicate a substantial terrestrial input during the last ice age and early deglacial, for which we attempt to correct the bulk sediment d15N using its observed relationship with the C/N ratio. Both corrected bulk and FB-d15N reveal a substantial glacial-to-Holocene decrease of d15N toward Holocene values of around 2.5 per mil, similar to observations from the Caribbean. This d15N change is most likely due to a glacial-to-Holocene increase in regional N2-fixation. A deglacial peak in the FB-d15N of thermocline dwelling foraminifera Orbulina universa probably reflects a whole ocean increase in the d15N of nitrate during deglaciation. The d15N of the surface dwelling foraminifera Globigerinoides ruber and the corrected bulk d15N show little sign of this deglacial peak, both decreasing from last glacial values much earlier than does the d15N of O. universa; this may indicate that G. ruber and bulk N reflect the euphotic zone signal of an early local increase in N2-fixation. Our results add to the evidence that, during the last ice age, the larger iron input from dust did not lead to enhanced N2-fixation in this region. Rather, the glacial-to-Holocene decrease in d15N is best explained by a response of N2-fixation within the Atlantic to the deglacial increase in global ocean denitrification.
Resumo:
Preliminary data on dissolved organic carbon (DOC) and dissolved sugars in interstitial water samples collected at Sites 618, 619, and 623 of Deep Sea Drilling Project Leg 96 are presented. At Site 618 in Orca Basin, the DOC content of the interstitial water peaks in the hypersaline sulfate reduction zone. The sugar content reaches a maximum and the DOC content begins to decrease at the depth of methane gas generation. Below that depth, the sugar and DOC contents are about constant. At Site 619 in Pigmy Basin, the DOC content increases slightly with depth in the sulfate reduction and the methane fermentation zones. The sugar content is lower in the sulfate reduction zone than in the methane fermentation zone; sugar concentration increases and fluctuates with methane gas percentages within the methane fermentation zone. At Site 623 in the lower fan region of the Mississippi Fan, there is no sulfate reduction zone. The DOC and sugar contents of the interstitial water are almost constant with depth.