48 resultados para Open Research Data
Resumo:
The first International Polar Year (IPY) was an international effort to perform continous meteorological and geophysical observations over a time period of two years (1882-1883). Eleven nations established twelve research stations in the Arctic along with thirteen auxilary stations. Two stations were operated on the southern hemisphere (South Georgia and Tierra del Fuego). The data were published in 26 volumes on 8700+ pages of reports, descriptions, tables and graphs in total. The list of meteorological parameters includes temperature, wind, pressure, clouds, precipitation, evaporation, humidity and radiation. In the light of Global Change and the intensification of observations and continous measurements in both polar regions, long-time series increase in importance. The observations of the first IPY from the 19th century enable us to extend the data from the 20th century even more back into the past. In the occasion of the fourth IPY (2007-2009) WDC-MARE decided to digitize the complete set of meteorological data in full hourly resolution and publish it in its reports and make it available in Open Access via the data library PANGAEA.
Resumo:
In the collective monograph results of geological and geophysical studies in the Tadjura Rift carried out by conventional outboard instruments and from deep/sea manned submersibles "Pisces" in winter 1983-1984 are reported. Main features of rift tectonics, geology, petrology, and geochemistry of basalts from the rift are under consideration. An emphasis is made on lithology, stratigraphy, and geochemistry of bottom sediments. Roles of terrigenous, edafogenic, biogenic, and hydrothermal components in formation of bottom sediments from the rift zone are shown.
Resumo:
Monitoring the impact of sea storms on coastal areas is fundamental to study beach evolution and the vulnerability of low-lying coasts to erosion and flooding. Modelling wave runup on a beach is possible, but it requires accurate topographic data and model tuning, that can be done comparing observed and modeled runup. In this study we collected aerial photos using an Unmanned Aerial Vehicle after two different swells on the same study area. We merged the point cloud obtained with photogrammetry with multibeam data, in order to obtain a complete beach topography. Then, on each set of rectified and georeferenced UAV orthophotos, we identified the maximum wave runup for both events recognizing the wet area left by the waves. We then used our topography and numerical models to simulate the wave runup and compare the model results to observed values during the two events. Our results highlight the potential of the methodology presented, which integrates UAV platforms, photogrammetry and Geographic Information Systems to provide faster and cheaper information on beach topography and geomorphology compared with traditional techniques without losing in accuracy. We use the results obtained from this technique as a topographic base for a model that calculates runup for the two swells. The observed and modeled runups are consistent, and open new directions for future research.
Resumo:
The results of oceanographic observations on board the icebreaker "Shirase" and tidal observations at Syowa Station, Antarctica, are presented in this report. The oceanographic observations were carried out by the summer party of the 37th Japanese Antarctic Research Expedition (JARE-37) during the austral summer of 1995/1996. The tidal observations were carried out by the winter party of JARE-36 from February 1995 to January 1996.