140 resultados para Multi-resolution Method
                                
Resumo:
We report an optimized method for extracting neodymium (Nd) from fossil fish teeth with a single-stage column (125 µl stem volume; LN Resin, Eichrom Industries, Darien Illinois) for isotopic analysis by multi-collector inductively coupled mass spectrometry (MC-ICMPS). Three reference materials (basalt: BCR-2, BHVO-2; phosphate: fossil bone composite) and splits of fossil fish teeth samples previously processed with existing two-stage column methods were processed using the single-stage column method. 143Nd/144Nd values of reference materials agree within error with published values, and the values for fish teeth correspond with sample splits processed with two-stage columns. Precision to ± ~0.23 epsilon-Nd was achieved for 30 ng Nd samples of reference materials, and Nd isotope measurements of fossil fish tooth sample replicates as small as 7 ng Nd were reproducible within long term instrumental uncertainty. We demonstrate the utility of the new method with the first high resolution Nd isotope record spanning the ~40.0 Ma middle Eocene Climatic Optimum, which shows an excursion of 0.65 epsilon-Nd during the peak warming at the study site (Ocean Drilling Program Leg 119, Site 738; 30 kyr sample spacing from 40.3 to 39.6 Ma). LN Resin is already used in standard methods for separating Nd, and Nd isotopes are routinely measured by MC-ICPMS with high efficiency inlet systems. Our innovation is a single, small volume LN Resin column for Nd separation. The streamlined approach results in a 10X increase in sample throughput.
                                
Resumo:
Precipitation has a larger variability than temperature in tropical monsoon regions, thus it is an important climate variable. However, reconstructions of long-term rainfall histories are scarce because of the lack of reliable proxies. Here we document that iron oxide minerals, specifically the ratio of hematite to goethite (Hm/Gt), is a reasonable precipitation proxy. Using diffuse reflectance spectrophotometry, we measured samples from Ocean Drilling Program (ODP) 1143 drilling site (9°21.72'N, 113°17.11'E, 2777 m water depth) for hematite and goethite, whose formation processes are favored by opposing climate conditions. In order to determine the content of hematite and goethite we produced a set of calibration samples by removing the iron oxides to generate the natural matrix to which hematite and goethite in known percentages were added. From these calibration samples we developed a transfer function for determining hematite and goethite concentration from a sample's spectral reflectance. Applying this method to ODP 1143 sediments (top 34 m of a 510 m core with sampling interval of 10 cm) we were able to reconstruct a continuous precipitation history for SE Asia of the past 600 kyr using the Hm/Gt ratio as a proxy of the precipitation variability of Asian monsoon. The reliability of this Hm/Gt proxy is corroborated by its consistency with the stalagmite delta18O data from South China. Comparing long-term Hm/Gt records with the surface temperature gradient of equatorial Pacific Ocean, we found that monsoon precipitation and El Niño are correlated for the last 600 kyr. The development of El Niño-like conditions decreased SE Asia precipitation, whereas precipitation increases in response to La Niña intensification
                                
                                
Bathymetric map of Heron Reef, Australia, derived from airborne hyperspectral data at 1 m resolution
                                
Resumo:
A simple method for efficient inversion of arbitrary radiative transfer models for image analysis is presented. The method operates by representing the shape of the function that maps model parameters to spectral reflectance by an adaptive look-up tree (ALUT) that evenly distributes the discretization error of tabulated reflectances in spectral space. A post-processing step organizes the data into a binary space partitioning tree that facilitates an efficient inversion search algorithm. In an example shallow water remote sensing application, the method performs faster than an implementation of previously published methodology and has the same accuracy in bathymetric retrievals. The method has no user configuration parameters requiring expert knowledge and minimizes the number of forward model runs required, making it highly suitable for routine operational implementation of image analysis methods. For the research community, straightforward and robust inversion allows research to focus on improving the radiative transfer models themselves without the added complication of devising an inversion strategy.
                                
Resumo:
To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.
                                
Resumo:
[1] Planktonic d18O and Mg/Ca-derived sea surface temperature (SST) records from the Agulhas Corridor off South Africa display a progressive increase of SST during glacial periods of the last three climatic cycles. The SST increases of up to 4°C coincide with increased abundance of subtropical planktonic foraminiferal marker species which indicates a progressive warming due to an increased influence of subtropical waters at the core sites. Mg/Ca-derived SST maximizes during glacial maxima and glacial Terminations to values about 2.5°C above full-interglacial SST. The paired planktonic d18O and Mg/Ca-derived SST records yield glacial seawater d18O anomalies of up to 0.8 per mill, indicating measurably higher surface salinities during these periods. The SST pattern along our record is markedly different from a UK'37-derived SST record at a nearby core location in the Agulhas Corridor that displays SST maxima only during glacial Terminations. Possible explanations are lateral alkenone advection by the vigorous regional ocean currents or the development of SST contrasts during glacials in association with seasonal changes of Agulhas water transports and lateral shifts of the Agulhas retroflection. The different SST reconstructions derived from UK'37 and Mg/Ca pose a significant challenge to the interpretation of the proxy records and demonstrate that the reconstruction of the Agulhas Current and interocean salt leakage is not as straightforward as previously suggested.
                                
Resumo:
The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.
                                
Resumo:
A high resolution mixed carbonate and siliciclastic sequence from DSDP Site 594 contains a detailed record of climate change in the late Pliocene. The sequence can be accurately dated by the LAD of Nitzschia weaveri, the LAD of Thalassiosira insigna, the LAD of T. vulnifica and the LAD of T. kolbei diatom datums. Carbonate content and delta18O signatures provide added resolution and place the sequence between isotope stage 100 and 92. The sequence contains well-preserved and diverse dinoflagellate cyst floras. Use of principal component (PCA) and canonical correspondence analyses (CCA) identifies changes in the assemblages that principally reflect warming and cooling trends. Species association with warmer climates included Impagidinium patulum, I. paradoxum and I. sp. cf. paradoxum while those from cooler climates include Invertecysta tabulata and I. velorum. CCA is shown to be a valuable method of determining the past environmental preferences of extinct species such as I. tabulata.
                                
Resumo:
In 2005, the International Ocean Colour Coordinating Group (IOCCG) convened a working group to examine the state of the art in ocean colour data merging, which showed that the research techniques had matured sufficiently for creating long multi-sensor datasets (IOCCG, 2007). As a result, ESA initiated and funded the DUE GlobColour project (http://www.globcolour.info/) to develop a satellite based ocean colour data set to support global carbon-cycle research. It aims to satisfy the scientific requirement for a long (10+ year) time-series of consistently calibrated global ocean colour information with the best possible spatial coverage. This has been achieved by merging data from the three most capable sensors: SeaWiFS on GeoEye's Orbview-2 mission, MODIS on NASA's Aqua mission and MERIS on ESA's ENVISAT mission. In setting up the GlobColour project, three user organisations were invited to help. Their roles are to specify the detailed user requirements, act as a channel to the broader end user community and to provide feedback and assessment of the results. The International Ocean Carbon Coordination Project (IOCCP) based at UNESCO in Paris provides direct access to the carbon cycle modelling community's requirements and to the modellers themselves who will use the final products. The UK Met Office's National Centre for Ocean Forecasting (NCOF) in Exeter, UK, provides an understanding of the requirements of oceanography users, and the IOCCG bring their understanding of the global user needs and valuable advice on best practice within the ocean colour science community. The three year project kicked-off in November 2005 under the leadership of ACRI-ST (France). The first year was a feasibility demonstration phase that was successfully concluded at a user consultation workshop organised by the Laboratoire d'Océanographie de Villefranche, France, in December 2006. Error statistics and inter-sensor biases were quantified by comparison with insitu measurements from moored optical buoys and ship based campaigns, and used as an input to the merging. The second year was dedicated to the production of the time series. In total, more than 25 Tb of input (level 2) data have been ingested and 14 Tb of intermediate and output products created, with 4 Tb of data distributed to the user community. Quality control (QC) is provided through the Diagnostic Data Sets (DDS), which are extracted sub-areas covering locations of in-situ data collection or interesting oceanographic phenomena. This Full Product Set (FPS) covers global daily merged ocean colour products in the time period 1997-2006 and is also freely available for use by the worldwide science community at http://www.globcolour.info/data_access_full_prod_set.html. The GlobColour service distributes global daily, 8-day and monthly data sets at 4.6 km resolution for, chlorophyll-a concentration, normalised water-leaving radiances (412, 443, 490, 510, 531, 555 and 620 nm, 670, 681 and 709 nm), diffuse attenuation coefficient, coloured dissolved and detrital organic materials, total suspended matter or particulate backscattering coefficient, turbidity index, cloud fraction and quality indicators. Error statistics from the initial sensor characterisation are used as an input to the merging methods and propagate through the merging process to provide error estimates for the output merged products. These error estimates are a key component of GlobColour as they are invaluable to the users; particularly the modellers who need them in order to assimilate the ocean colour data into ocean simulations. An intensive phase of validation has been undertaken to assess the quality of the data set. In addition, inter-comparisons between the different merged datasets will help in further refining the techniques used. Both the final products and the quality assessment were presented at a second user consultation in Oslo on 20-22 November 2007 organised by the Norwegian Institute for Water Research (NIVA); presentations are available on the GlobColour WWW site. On request of the ESA Technical Officer for the GlobColour project, the FPS data set was mirrored in the PANGAEA data library.
                                
Resumo:
A selection of MeO-BDE and BDE congeners were analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). The analytes were extracted and cleaned-up using open column extraction and multi-layer silica gel column chromatography. The analysis was performed using both low resolution and high resolution GC-MS. MeO-PBDE concentrations relative to total PBDE concentrations varied greatly between sampling periods and species. The highest MeO-PBDE levels were found in the toothed whale species pilot whale and white-sided dolphin, often exceeding the concentration of the most abundant PBDE, BDE-47. The lowest MeO-PBDE levels were found in fin whales and ringed seals. The main MeO-BDE congeners were 6-MeO-BDE47 and 2'-MeO-BDE68. A weak correlation only between BDE47 and its methoxylated analog 6-MeO-BDE47 was found and is indicative of a natural source for MeO-PBDEs.
                                
                                
                                
                                
 
                    