231 resultados para Moran
Resumo:
Sediments undergoing accretion in trench-forearc systems are subjected to conditions of large lateral thrusting. This stress regime controls the mechanism of faulting as well as the yield and strength properties of the sediment. Understanding them is therefore crucial for the construction of quantitative models of sediment dynamics in convergent margin settings. For this purpose triaxial and oedometer tests were performed on six whole-round core samples recovered from Site 808 from depths between 173 and 705 mbsf. Samples from five depth intervals were subjected to a triaxial test program that was primarily designed to define yield and strength behavior. Test specimens were cut parallel and normal to the core axis. Additional five oedometer tests with similarly prepared specimens were performed on samples from four depth intervals to evaluate the directional state and degree of sediment compaction. Test results show that the degree of sediment compaction is higher than expected from overburden. This overcompaction increases with depth. A well-developed mechanical anisotropy is evident in all samples tested, regardless of their depth and lithology. Values of yield limit, stiffness, and shear strength are up to 40% higher in the horizontal direction compared to the vertical direction. In addition the test data demonstrate that the axis of the volumetric yield loci have rotated into extensional stress field. This verifies that the mechanical state of sediment in the accretionary wedge is controlled by in-situ stress conditions of extensional nature. The coefficients of lateral stress inferred suggest that the extensional stress regime becomes increasingly effective with depth.
Resumo:
The Integrated OceanDrilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), recovered the first Cenozoic sedimentary sequence from the central Arctic Ocean. ACEX provided ground truth for basin scale geophysical interpretations and for guiding future exploration targets in this largely unexplored ocean basin. Here, we present results from a series of consolidation tests used to characterize sediment compressibility and permeability and integrate these with high-resolution measurements of bulk density, porosity and shear strength to investigate the stress history and the nature of prominent lithostratigraphic and seismostratigraphic boundaries in the ACEX record. Despite moderate sedimentation rates (10-30 m/Myr) and high permeability values (10**-15 -10**-18 m**2), consolidation and shear strength measurements both suggest an overall state of underconsolidation or overpressure. One-dimensional compaction modelling shows that to maintain such excess pore pressures, an in situ fluid source is required that exceeds the rate of fluid expulsion generated by mechanical compaction alone. Geochemical and sedimentological evidence is presented that identifes the Opal A-C/T transformation of biosiliceous rich sediments as a potential additional in situ fluid source.However, the combined rat of chemical and mechanical compaction remain too low to fully account for the observed pore pressure gradients, implying an additional diagenetic fluid source from within or below the recovered Cenozoic sediments from ACEX. Recognition of the Opal A-C/T reaction front in the ACEX record has broad reaching regional implications on slope stability and subsurface pressure evolution, and provides an important consideration for interpreting and correlating the spatially limited seismic data from the Arctic Ocean.
Resumo:
Drilling during Leg 167 at the California margin was scheduled to recover continuous sedimentary sections. Multiple advanced piston core (APC) holes drilled at different depth offsets provided core overlap in successive APCs. Correlation of high-resolution laboratory physical properties data from adjacent APC holes was used to compile composite depth sections for each site. The composite depth sections were used to confirm continuous recovery and enable high-resolution sampling. The meters composite depth (mcd) scale differs from the shipboard meters below seafloor (mbsf) scale because of (1) core expansion following recovery (MacKillop et al., 1995, doi:10.2973/odp.proc.sr.138.118.1995), (2) coring gaps, and (3) stretching/compression of sediment during coring (Lyle, Koizumi, Richter, et al., 1997, doi:10.2973/odp.proc.ir.167.1997). Moran (1997, doi:10.2973/odp.proc.sr.154.132.1997) calculated that sediment expansion accounted for 90%-95% of the Leg 154 depth offset between shipboard mbsf and the mcd scales. Terzaghi's one-dimensional theory of consolidation (Terzaghi, 1943) describes the response of sediments to stress loading and release. Mechanical loading in marine environments is provided by the buoyant weight of the overlying sediments. The load increases with depth below seabed, resulting in sediment volume reduction as water is "squeezed" out of the voids in the sediment. Stress release during core recovery results in expansion of the sediment and volume increase as water returns to the sediment. The sediment expansion or rebound defines the elastic properties of the sediment. In this study we examine the elastic deformation properties of sediments recovered from Sites 1020 and 1021. These results are used to (1) correct the laboratory index properties measurements to in situ values and (2) determine the contribution of sediment rebound to the depth offset between the mbsf and mcd scales.
Resumo:
During ODP Leg 123, Sites 765 and 766 were drilled to examine the tectonic evolution, sedimentary history, and paleoceanography of the Argo Abyssal Plain and lower Exmouth Plateau. At each site, the quality of magnetostratigraphic and biostratigraphic records varies because of complicating factors, such as the predominance of turbidites, the presence of condensed horizons, or deposition beneath the CCD. Based primarily on the presence of nannofossils, the base of the sedimentary section at Site 765 was dated as Tithonian. A complete Cretaceous sequence was recovered at this site, although the sedimentation rate varies markedly through the section. The Cretaceous/Tertiary boundary is represented by a condensed horizon. The condensed Cenozoic sequence at Site 765 extends from the upper Paleocene to the lower Miocene. A dramatic increase in sedimentation rate was observed in the lower Miocene, and a 480-m-thick Neogene section is present. The Neogene section is continuous, except for a minor hiatus in the lower Pliocene. The base of the sedimentary section at Site 766 is Valanginian, in agreement with the site's position on marine magnetic anomaly Mil. Valanginian to Barremian sediments are terrigenous, with variable preservation of microfossils, and younger sediments are pelagic, with abundant well-preserved microfossils. Sedimentation rate is highest in the Lower Cretaceous and decreases continually upsection. Upper Cenozoic sediments are condensed, with several hiatuses.