47 resultados para Missionaries, Canadian.
Resumo:
A probabilistic function (integrated source contribution function, ISCF) based on backward air mass trajectory calculation was developed to track sources and atmospheric pathways of polycyclic aromatic hydrocarbons (PAHs) to the Canadian High Arctic station of Alert. In addition to the movement of air masses, the emission intensities at the sources and the major processes of partition, indirect photolysis, and deposition occurring on the way to the Arctic were incorporated into the ISCF. The predicted temporal trend of PAHs at Alert was validated by measured PAH concentrations throughout 2004. The PAH levels in the summer are orders of magnitude lower than those in the winter and spring when long-range atmospheric transport events occur more frequently. PAHs observed at Alert are mostly from East Asia (including Russia Far East), North Europe (including European Russia), and North America. These sources account for 25, 45, and 27% of PAHs atmospheric level at Alert, respectively. Source regions and transport pathways contributing to the PAHs contamination in the Canadian High Arctic vary seasonally. In the winter, Russia and Europe are the major sources. PAHs from these sources travel eastward and turn to the north at approximately 120°E before reaching Alert, in conjunction with the well- known Arctic haze events. In the spring, PAHs from Russia and Europe first migrate to the west and then turn to the north at 60°W toward Alert. The majority of PAHs in the summer are from northern Canada where they are carried to Alert via low- level transport pathways. In the fall, 70% of PAHs arriving at Alert are delivered from North American sources.
Resumo:
A sediment-sampling program was carried out in the Nares Strait region during the Nares 2001 Expedition to obtain cores for high-resolution palaeoceanographic studies of late Pleistocene-Holocene climate change. Long cores (>4 m) were obtained from basins near Coburg Island, Jones Sound, John Richardson Fiord off Kane Basin, and in northeastern Hall Basin. Short cores and grab samples were taken on shelves east and west of northern Smith Sound and in Kennedy Channel. Detailed studies of sediment texture, stable isotopes, microfossils and palynomorphs were made on the longest cores from Jones Sound and Hall Basin at the southern and northern ends of the Nares Strait region.
Resumo:
Mercury concentrations ([Hg]) in Arctic food fish often exceed guidelines for human subsistence consumption. Previous research on two food fish species, Arctic char (Salvelinus alpinus) and lake trout (Salvelinus namaycush), indicates that anadromous fish have lower [Hg] than nonanadromous fish, but there have been no intraregional comparisons. Also, no comparisons of [Hg] among anadromous (sea-run), resident (marine access but do not migrate), and landlocked (no marine access) life history types of Arctic char and lake trout have been published. Using intraregional data from 10 lakes in the West Kitikmeot area of Nunavut, Canada, we found that [Hg] varied significantly among species and life history types. Differences among species-life history types were best explained by age-at-size and C:N ratios (indicator of lipid); [Hg] was significantly and negatively related to both. At a standardized fork length of 500 mm, lake trout had significantly higher [Hg] (mean 0.17 µg/g wet wt) than Arctic char (0.09 µg/g). Anadromous and resident Arctic char had significantly lower [Hg] (each 0.04 µg/g) than landlocked Arctic char (0.19 µg/g). Anadromous lake trout had significantly lower [Hg] (0.12 µg/g) than resident lake trout (0.18 µg/g), but no significant difference in [Hg] was seen between landlocked lake trout (0.21 µg/g) and other life history types. Our results are relevant to human health assessments and consumption guidance and will inform models of Hg accumulation in Arctic fish.
Resumo:
Lemmings construct nests of grass and moss under the snow during winter, and counting these nests in spring is 1 method of obtaining an index of winter density and habitat use. We counted winter nests after snow melt on fixed grids on 5 areas scattered across the Canadian Arctic and compared these nest counts to population density estimated by mark-recapture on the same areas in spring and during the previous autumn. Collared lemmings were a common species in most areas, some sites had an abundance of brown lemmings, and only 2 sites had tundra voles. Winter nest counts were correlated with lemming densities estimated in the following spring (r(s) = 0.80, P < 0.001), but less well correlated with densities the previous autumn (r(s) = 0.55, P < 0.001). Winter nest counts can be used to predict spring lemming densities with a log-log regression that explains 64% of the observed variation. Winter nest counts are best treated as an approximate index and should not be used when precise, quantitative lemming density estimates are required. Nest counts also can be used to provide general information about habitat-use in winter, predation rates by weasels, and the extent of winter breeding.
Resumo:
We investigated total storage and landscape partitioning of soil organic carbon (SOC) in continuous permafrost terrain, central Canadian Arctic. The study is based on soil chemical analyses of pedons sampled to 1 m depth at 35 individual sites along three transects. Radiocarbon dating of cryoturbated soil pockets, basal peat and fossil wood shows that cryoturbation processes have been occurring since the Middle Holocene and that peat deposits started to accumulate in a forest-tundra environment where spruce was present (~6000 cal yrs BP). Detailed partitioning of SOC into surface organic horizons, cryoturbated soil pockets and non-cryoturbated mineral soil horizons is calculated (with storage in active layer and permafrost calculated separately) and explored using principal component analysis. The detailed partitioning and mean storage of SOC in the landscape are estimated from transect vegetation inventories and a land cover classification based on a Landsat satellite image. Mean SOC storage in the 0-100 cm depth interval is 33.8 kg C/m**2, of which 11.8 kg C/m**2 is in permafrost. Fifty-six per cent of the total SOC mass is stored in peatlands (mainly bogs), but cryoturbated soil pockets in Turbic Cryosols also contribute significantly (17%). Elemental C/N ratios indicate that this cryoturbated soil organic matter (SOM) decomposes more slowly than SOM in surface O-horizons.