172 resultados para Military District of the West


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continental rise west of the Antarctic Peninsula includes a number of large sediment mounds interpreted as contourite drifts. Cores from six sediment drifts spanning some 650 km of the margin and 48 of latitude have been dated using chemical and isotopic tracers of palaeoproductivity and diatom biostratigraphy. Interglacial sedimentation rates range from 1.1 to 4.3 cm/ka. Glacial sedimentation rates range from 1.8 to 13.5 cm/ka, and decrease from proximal to distal sites on each drift. Late Quaternary sedimentation was cyclic, with brown, biogenic, burrowed mud containing ice-rafted debris (IRD) in interglacials and grey, barren, laminated mud in glacials. Foraminiferal intervals occur in interglacial stages 5 and 7 but not in the Holocene. Processes of terrigenous sediment supply during glacial stages differed; meltwater plumes were more important in stages 2-4, turbidity currents and ice-rafting in stage 6. The terrigenous component shows compositional changes along the margin, more marked in glacials. The major oxides Al2O3 and K2O are higher in the southwest, and CaO and TiO2 higher in the northeast. There is more smectite among the clay minerals in the northeast. Magnetic susceptibility varies along and between drifts. These changes reflect source variations along the margin. Interglacial sediments show less clear trends, and their IRD was derived from a wider area. Downslope processes were dominant in glacials, but alongslope processes may have attained equal importance in interglacials. The area contrasts with the East Antarctic continental slope in the SE Weddell Sea, where ice-rafting is the dominant process and where interglacial sedimentation rates are much higher than glacial. The differences in glacial setting and margin physiography can account for these contrasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experiment was carried out on the soft bottom in the sublitoral zone of the Furugelm Island (Peter the Great Bay, Sea of Japan) to study formation of benthic communities. Boxes with defauned sediments were placed on depths of 4, 6 and 13 m and exposed during 60 days in the summer period. Half of them were covered with a net with mesh size 2 cm to prevent effect of large predators. It was found that spatial pattern of invertebrates' sinking in the bay conforms to distribution of benthic communities. Larvae of benthic invertebrates sinks in general in places inhabited by their adult species. The main factors responsible for recolonzation are: sediment type and local hydrodynamic conditions. Heart-shaped sea urchin Echinocardium cordatum is numerically dominated in the bay on depth 3-4.5 m, but its larvae sinks in the deeper area. Community structure is supported by mature specimen migration to places inhabited by species. Predators affect largely on the species.