129 resultados para Massive Corals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As anthropogenic climate change is an ongoing concern, scientific investigations on its impacts on coral reefs are increasing. Although impacts of combined ocean acidification (OA) and temperature stress (T) on reef-building scleractinian corals have been studied at the genus, species and population levels, there are little data available on how individual corals respond to combined OA and anomalous temperatures. In this study, we exposed individual colonies of Acropora digitifera, Montipora digitata and Porites cylindrica to four pCO2-temperature treatments including 400 µatm-28 °C, 400 µatm-31 °C, 1000 µatm-28 °C and 1000 µatm-31 °C for 26 days. Physiological parameters including calcification, protein content, maximum photosynthetic efficiency, Symbiodinium density, and chlorophyll content along with Symbiodinium type of each colony were examined. Along with intercolonial responses, responses of individual colonies versus pooled data to the treatments were investigated. The main results were: 1) responses to either OA or T or their combination were different between individual colonies when considering physiological functions; 2) tolerance to either OA or T was not synonymous with tolerance to the other parameter; 3) tolerance to both OA and T did not necessarily lead to tolerance of OA and T combined (OAT) at the same time; 4) OAT had negative, positive or no impacts on physiological functions of coral colonies; and 5) pooled data were not representative of responses of all individual colonies. Indeed, the pooled data obscured actual responses of individual colonies or presented a response that was not observed in any individual. From the results of this study we recommend improving experimental designs of studies investigating physiological responses of corals to climate change by complementing them with colony-specific examinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explanations for the demise of the Classic Maya civilization on the Yucatán Peninsula during the Terminal Classic Period (TCP; CE 750-1050) are controversial. Multiyear droughts are one likely cause, but the role of the Caribbean Sea, the dominant moisture source for Mesoamerica, remains largely unknown. Here we present bimonthly resolved snapshots of reconstructed sea surface temperature (SST) and salinity (SSS) variability in the southern Caribbean from precisely dated fossil corals. Our fossil coral results from Bonaire indicate strong interannual to decadal SST and SSS variability in the southern Caribbean Sea during the TCP with multiyear extremes of high SSS and high SST that coincide with droughts on the Yucatán Peninsula. The results are best explained by changed Caribbean SST gradients affecting the Caribbean low-level atmospheric jet with consequences for Mesoamerican precipitation, possibly linked to changes in Atlantic Meridional Overturning Circulation strength. Our findings provide a new perspective on the anomalous hydrological changes on the Yucatán Peninsula during the TCP that complement the often-suggested southward displacement of the Intertropical Convergence Zone. We advocate for a strong role of ocean-atmosphere interactions in the Caribbean Sea related to the multiyear variations in Caribbean Sea surface conditions as an important driver of the spatially complex pattern of hydrological anomalies during the TCP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The South China Sea (SCS) is well connected with the western Pacific and influenced by the East Asian monsoon. We have examined temporal variations in radiocarbon marine reservoir ages (R) and regional marine reservoir corrections (DeltaR) of the SCS during the Holocene using paired measurements of AMS 14C and TIMS 230Th on 20 pristine corals. The results show large fluctuations in both R and DeltaR values over the past 7500 years (yrs) with two distinct plateaus during 7.5-5.6 and 3.5-2.5 thousand calendar years before present (cal ka BP). The respective weighted mean DeltaR values of these plateaus are 151 ± 85 and 89 ± 59 yrs, which are significantly higher than its modern value of -23 ± 52 yrs. This suggests that using a constant modern DeltaR value to calibrate 14C dates of the SCS marine samples will introduce additional errors to the calibrated ages. Our results provide the first database for the Holocene R and DeltaR values of the SCS for improved radiocarbon calibration of marine samples. We interpret the two DeltaR plateaus as being related to two intervals with weakened El Niño - Southern Oscillation (ENSO) and intensified East Asian summer monsoon (EASM). This is because the 14C content of the SCS surface water is controlled by both the 14C concentration of the Pacific North Equatorial Current (NEC) which is in turn influenced by ENSO-induced upwelling along the Pacific equator and vertical upwelling within the SCS as a result of moisture transportation to midlatitude region to supply the EASM rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfide mineral major and trace element analyses were performed on more than 50 polished slabs representing mineralization from three seafloor hydrothermal massive sulfide deposits. Samples from the Bent Hill and ODP Mound massive sulfide deposits, both on the Juan de Fuca Ridge, can be contrasted with samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound on the Mid-Atlantic Ridge. The massive sulfide at Bent Hill is predominantly pyrite and pyrrhotite, with increasing amounts of copper-bearing sulfide minerals at the base of the massive sulfide body and through the stockwork to an interval 200 m below seafloor that hosts high copper mineralization (Deep Copper Zone). ODP Mound contains much more abundant sphalerite and copper-bearing sulfides as compared to either Bent Hill or TAG, which are predominantly pyrite with much less abundant chalcopyrite. Copper-bearing sulfides from the Deep Copper Zone beneath Bent Hill and the lowest sampled interval of ODP Mound are petrographically and chemically similar, but distinct from copper-bearing minerals higher in either sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiocarbon and uranium-thorium dating results are presented from a genus of calcitic Antarctic cold-water octocorals (family Coralliidae), which were collected from the Marie Byrd Seamounts in the Amundsen Sea (Pacific sector of the Southern Ocean) and which to date have not been investigated geochemically. The geochronological results are set in context with solution and laser ablation-based element/Ca ratios (Li, B, Mg, Mn, Sr, Ba, U, Th). Octocoral radiocarbon ages on living corals are in excellent agreement with modern ambient deep-water D14C, while multiple samples of individual fossil coral specimens yielded reproducible radiocarbon ages. Provided that local radiocarbon reservoir ages can be derived for a given time, fossil Amundsen Sea octocorals should be reliably dateable by means of radiocarbon. In contrast to the encouraging radiocarbon findings, the uranium-series data are more difficult to interpret. The uranium concentration of these calcitic octocorals is an order of magnitude lower than in the aragonitic hexacorals that are conventionally used for geochronological investigations. While modern and Late Holocene octocorals yield initial d234U in good agreement with modern seawater, our results reveal preferential inward diffusion of dissolved alpha-recoiled 234U and its impact on fossil coral d234U. Besides alpha-recoil related 234U diffusion, high-resolution sampling of two fossil octocorals further demonstrates that diagenetic uranium mobility has offset apparent coral U-series ages. Combined with the preferential alpha-recoil 234U diffusion, this process has prevented fossil octocorals from preserving a closed system U-series calendar age for longer than a few thousand years. Moreover, several corals investigated contain significant initial thorium, which cannot be adequately corrected for because of an apparently variable initial 232Th/230Th. Our results demonstrate that calcitic cold-water corals are unsuitable for reliable U-series dating. Mg/Ca ratios within single octocoral specimens are internally strikingly homogeneous, and appear promising in terms of their response to ambient temperature. Magnesium/lithium ratios are significantly higher than usually observed in other deep marine calcifiers and for many of our studied corals are remarkably close to seawater compositions. Although this family of octocorals is unsuitable for glacial deep-water D14C reconstructions, our findings highlight some important differences between hexacoral (aragonitic) and octocoral (calcitic) biomineralisation. Calcitic octocorals could still be useful for trace element and some isotopic studies, such as reconstruction of ambient deep water neodymium isotope composition or pH, via boron isotopic measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of global climate change on coral reefs is expected to be most profound at the sea surface, where fertilization and embryonic development of broadcast-spawning corals takes place. We examined the effect of increased temperature and elevated CO2 levels on the in vitro fertilization success and initial embryonic development of broadcast-spawning corals using a single male:female cross of three different species from mid- and high-latitude locations: Lyudao, Taiwan (22° N) and Kochi, Japan (32° N). Eggs were fertilized under ambient conditions (27 °C and 500 µatm CO2) and under conditions predicted for 2100 (IPCC worst case scenario, 31 °C and 1000 µatm CO2). Fertilization success, abnormal development and early developmental success were determined for each sample. Increased temperature had a more profound influence than elevated CO2. In most cases, near-future warming caused a significant drop in early developmental success as a result of decreased fertilization success and/or increased abnormal development. The embryonic development of the male:female cross of A. hyacinthus from the high-latitude location was more sensitive to the increased temperature (+4 °C) than the male:female cross of A. hyacinthus from the mid-latitude location. The response to the elevated CO2 level was small and highly variable, ranging from positive to negative responses. These results suggest that global warming is a more significant and universal stressor than ocean acidification on the early embryonic development of corals from mid- and high-latitude locations.