165 resultados para Lyra Minima


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative coccolithophore analyses were performed in core MD01-2446, located in the mid-latitude North Atlantic, to reconstruct climatically induced sea-surface water conditions throughout Marine Isotope Stages (MIS) 14-9. The data are compared to new and available paleoenvironmental proxies from the same site as well as other nearby North Atlantic records that support the coccolithophore signature at glacial-interglacial to millennial climate scale. Total coccolithophore absolute abundance increases during interglacials but abruptly drops during the colder glacial phases and deglaciations. Coccolithophore warm-water taxa (wwt) indicate that MIS11c and MIS9e experienced warmer and more stable conditions throughout the whole photic zone compared to MIS13. MIS11 was a long-lasting warmer and stable interglacial characterized by a climate optimum during MIS11c when a more prominent influence of the subtropical front at the site is inferred. The wwt pattern also suggests distinct interstadial and stadial events lasting about 4-10 kyr. The glacial increases of Gephyrocapsa margereli-G. muellerae 3-4 µm along with higher values of Corg, additionally supported by the total alkenone abundance at Site U1313, indicate more productive surface waters, likely reflecting the migration of the polar front into the mid-latitude North Atlantic. Distinctive peaks of G. margereli-muellerae (> 4 µm), C. pelagicus pelagicus, Neogloboquadrina pachyderma left coiling, and reworked nannofossils, combined with minima in total nannofossil accumulation rate, are tracers of Heinrich-type events during MIS12 and MIS10. Additional Heinrich-type events are suggested during MIS12 and MIS14 based on biotic proxies, and we discuss possible iceberg sources at these times. Our results improve the understanding of mid-Brunhes paleoclimate and the impact on phytoplankton diversity in the mid-latitude North Atlantic region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated two lignite quarries in northern Greece for orbital and suborbital climate variability. Sections Lava and Vegora are located at the southern and northern boundaries of the Ptolemais Basin, a northwest southeast elongated intramontane basin that contains Upper Miocene to Lower Pliocene lacustrine sediments. Sediments show cyclic alterations of marl-rich (light), and coal-rich or clay-rich (dark) strata on a decimeter to meter scale. First, we established low-resolution ground-truth stratigraphy based on paleomagnetics and biostratigraphy. Accordingly, the lower 67 m and 65 m that were investigated in both sections Vegora and Lava, respectively, belong to the Upper Miocene and cover a time period of 6.85 to 6.57 and 6.46 to 5.98 Ma at sedimentation rates of roughly 14 and 22 cm/ka. In order to obtain a robust and high-resolution chronology, we then tuned carbonate minima (low L* values; high magnetic susceptibility values) to insolation minima. Besides the known dominance of orbital precession and eccentricity, we detected a robust hemi-precessional cycle in most parameters, most likely indicative for monsoonal influence on climate. Moreover, the insolation-forced time series indicate a number of millennial-scale frequencies that are statistically significant with dominant periods of 1.5-8 kyr. Evolutionary spectral analysis indicates that millennial-scale climate variability documented for the Ptolemais Basin resembles the one that is preserved in ice-core records of Greenland. Most cycles show durations of several tens of thousands of years before they diminish or cease. This is surprising because the generally argued cause for Late Quaternary millennial-scale variability is associated with the presence of large ice sheets, which cannot be the case for the Upper Miocene. Possible explanations maybe a direct response to solar forcing, an influence on the formation of North Atlantic Deep Water through the outflow of high-salinity water, or an atmospheric link to the North Atlantic Oscillation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upper Holocene marine section from a kasten core taken from the oxygen minimum zone off Karachi (Pakistan) at water depth 700 m contains continuously laminated sediments with a sedimentation rate of 1.2 mm/yr and a unique record of monsoonal climatic variability covering the past 5000 years. Our chronostratigraphy is based on varve counts verified by conventional and AMS14C dating. Individual hemipelagic varve couplets are about 0.8-1.5 mm thick, with light-colored terrigenous laminae (A) deposited mainly during the winter monsoon alternating with dark-colored laminae (B) rich in marine organic matter, coccoliths, and fish debris that reflect deposition during the high-productivity season of the late summer monsoon (August-October). Precipitation and river runoff appear to control varve thickness and turbidite frequency. We infer that precipitation decreased in the river watershed (indicated by thinning varves) after 3500-4000 yr B.P. This is about the time of increasing aridification in the Near East and Middle East, as documented by decreasing Nile River runoff data and lake-level lowstands between Turkey and northwestern India. This precipitation pattern continued until today with precipitation minima about 2200-1900 yr B.P., 1000 yr B.P., and in the late Middle Ages (700-400 yr B.P.), and precipitation maxima in the intervening periods. As documented by spectral analysis, the thickness of varve couplets responds to the average length of a 250-yr cycle, a 125-yr cycle, the Gleissberg cycle of solar activity (95 yr), and a 56-yr cycle of unknown origin. Higher frequency cycles are also present at 45, 39, 29-31, and 14 yr. The sedimentary gray-value also shows strong variability in the 55-yr band plus a 31-yr cycle. Because high-frequency cyclicity in the ENSO band (ca. 3.5 and 5 yr) is only weakly expressed, our data do not support a straightforward interaction of the Pacific ENSO with the monsoon-driven climate system of the Arabian Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pore fluid and sediment chemical and isotopic data were obtained for samples from Ocean Drilling Program (ODP) Leg 205 Sites 1253, 1254, and 1255 in the Costa Rica subduction zone. The chemical and isotopic data reported here were generated in our shore-based laboratories to complement shipboard inorganic geochemical data. Li isotopic analyses were carried out by L.-H. Chan at Louisiana State University (USA). The data reported herein include fluoride, bromide, rubidium, cesium, and barium concentrations; Li and Sr isotopic compositions in pore fluids; and Rb, Cs, and Ba concentrations in representative bulk sediments. The data also include new pore fluid fluoride and bromide concentrations from corresponding ODP Leg 170 Sites 1039, 1040, and 1043. O.M. Saether's Site 1039 and 1040 fluoride concentration data are shown for comparison. Basal sediment fluoride concentrations and Li and Sr isotope ratios at both Sites 1253 and 1039 show reversals that approach modern seawater values. Br/Cl ratios are, however, conservative throughout the sediment section at Sites 1039 and 1253. The observed sharp F and Br concentration maxima, Rb and K concentration minima, the most radiogenic 87Sr/86Sr ratios, and highest 7Li values along the décollement and fracture zone (Sites 1040, 1043, 1254, and 1255) strengthen the evidence obtained during Leg 170 that a deeply sourced fluid, originating from fluid-rock reactions at ~150°C and corresponding to between 10 and 15 km depth, is transporting solutes to the ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10-15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000-5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mid-Miocene pelagic sedimentary sections can be correlated using intermediate and high resolution oxygen and carbon isotopic records of benthic foraminifera. Precision of a few tens of thousands of years is readily achievable at sites with high sedimentation rates, for example, Deep Sea Drilling Project sites 289 and 574. The mid-Miocene carbon isotope records are characterized by an interval of high d13C values between 17 and 13.5 Ma (the Monterey Excursion of Vincent and Berger 1985) upon which are superimposed a series of periodic or quasi-periodic fluctuations in d13C values. These fluctuations have a period of approximately 440 kyr, suggestive of the 413 kyr cycle predicted by Milankovitch theory. Vincent and Berger proposed that the Monterey Excursion was the result of increased organic carbon burial in continental margins sediments. The increased d13C values (called 13C maxima) superimposed on the generally high mid-Miocene signal coincide with increases in d18O values suggesting that periods of cooling and/or ice buildup were associated with exceptionally rapid burial of organic carbon and lowered atmospheric CO2 levels. It is likely that during the Monterey Excursion the ocean/atmosphere system became progressively more sensitive to small changes in insolation, ultimately leading to major cooling of deep water and expansion of continental ice. We have assigned an absolute chronology, based on biostratigraphic and magneto-biostratigraphic datum levels, to the isotope stratigraphy and have used that chronology to correlate unconformities, seismic reflectors, carbonate minima, and dissolution intervals. Intervals of sediment containing 13C maxima are usually better preserved than the overlying and underlying sediments, indicating that the d13C values of TCO2 in deep water and the corrosiveness of seawater are inversely correlated. This again suggests that the 13C maxima were associated with rapid burial of organic carbon and reduced levels of atmospheric CO2. The absolute chronology we have assigned to the isotopic record indicates that the major mid-Miocene deepwater cooling/ice volume expansion took 2 m.y. and was not abrupt as had been reported previously. The cooling appears abrupt at many sites because the interval is characterized by a number of dissolution intervals. The cooling was not monotonic, and the 2 m.y. interval included an episode of especially rapid cooling as well as a brief return to warmer conditions before the final phase of the cooling period. The increase in d18O values of benthic foraminifera between 14.9 and 12.9 Ma was greatest at deeper water sites and at sites closest to Antarctica. The data suggest that the d18O value of seawater increased by no more than about 1.1 per mil during this interval and that the remainder of the change in benthic d18O values resulted from cooling in Antarctic regions of deepwater formation. Equatorial planktonic foraminifera from sites 237 and 289 exhibit a series of 0.4 per mil steplike increases in d13C values. Only one of these increases in planktonic d13C is correlated with any of the features in the mid-Miocene benthic carbon isotope record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation of the quantitative composition of the coarse (> 40 µm) and clay (< 2 µm) fraction of HPC 532, DSDP Leg 75, in 1300 m water depth on the eastern Walvis Ridge off Southwest Africa yielded the following results: (1) The sediments reflect a complete Latest Miocene to Recent depositional history. Sedimentation rates vary between 2.3 and 7.8 cm/ka. (2) Preservation of calcium carbonate is subject to strong variations: short-term (< 100,000 years) and long-term (about 1 m.y.) cycles in carbonate dissolution have been observed, with strongest dissolution occurring during periods of lowered sea level. (3) Upwelling influence from the near-coastal upwelling centre has been detected by means of the opal content: interglacial periods show high opal contents, because the Benguela Current turned westward at about 20°S and carried opal-laden upwelled water to the west. Sediments from glacial periods, however, show opal minima. Besides these short-term cyclic variations in opal content, long-term cycles have been found, with maximum upwelling influence in the latest Pliocene/early Quaternary. (4) Each CaCO3 dissolution minimum (maximum) is correlated with an opal maximum (minimum) throughout the sediment sequence. (5) The oceanographic system off southwest Africa remained essentially unchanged since the latest Miocene: sea level rose and fell periodically on a small and on a large scale, and the Benguela Current flowed southeast-northwest and turned to the west at the latitude of Site 532 during interglacial periods, when sea level was high. (6) The climate in the near-coastal area of southwest Africa in the latitude of Site 532 has probably been arid throughout the investigated period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A benthic isotope record has been measured for core SO75-26KL from the upper Portuguese margin (1099 m water depth) to monitor the response of thermohaline overturn in the North Atlantic during Heinrich events. Evaluating benthic delta18O in TS diagrams in conjunction with equilibrium deltac fractionation implies that advection of Mediterranean outflow water (MOW) to the upper Portuguese margin was significantly reduced during the last glacial (< 15% compared to 30% today). The benthic isotope record along core SO75-26KL therefore primarily monitors variability of glacial North Atlantic conveyor circulation. The 14C-accelerator mass spectrometry ages of 13.54±.07 and 20.46±.12 ka for two ice-rafted detritus (IRD) layers in the upper core section and an interpolated age of 36.1 ka for a third IRD layer deeper in the core are in the range of published 14C ages for Heinrich events H1, H2, and H4. Marked depletion of benthic delta13C by 0.7-1.1 per mil during the Heinrich events suggests reduced thermohaline overturn in the North Atlantic during these events. Close similarity between meltwater patterns (inferred from planktonic delta18O) at Site 609 and ventilation patterns (inferred from benthic delta13C) in core SO75-26KL implies coupling between thermohaline overturn and surface forcing, as is also suggested by ocean circulation models. Benthic delta13C starts to decrease 1.5-2.5 kyr before Heinrich events Hl and H4, fully increased values are reached 1.5-3 kyr after the events, indicating a successive slowdown of thermohaline circulation well before the events and resumption of the conveyor's full strength well after the events. Benthic delta13C changes in the course of the Heinrich events show subtle maxima and minima suggesting oscillatory behavior of thermohaline circulation, a distinct feature of thermohaline instability in numerical models. Inferrred gradual spin-up of thermohaline circulation after Hl and H4 is in contrast to abrupt wanning in the North Atlantic region that is indicated by sudden increases in Greenland ice core delta18O and in marine faunal records from the northern North Atlantic. From this we infer that thermohaline circulation can explain only in part the rapid climatic oscillations seen in glacial sections of the Greenland ice core record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flux of siliceous plankton and taxonomic composition of diatom and silicoflagellate assemblages were determined from sediment trap samples collected in coastal upwelling-influenced waters off northern Chile (30°S, CH site) under "normal" or non-El Niño (1993-94) and El Niño conditions (1997-98). In addition, concentration of biogenic opal and siliceous plankton, and diatom and silicoflagellate assemblages preserved in surface sediments are provided for a wide area between 27° and 43°S off Chile. Regardless of the year, winter upwelling determines the maximum production pattern of siliceous microorganisms, with diatoms numerically dominating the biogenic opal flux. During the El Niño year the export is markedly lower: on an annual basis, total mass flux diminished by 60%, and diatom and silicoflagellate export by 75%. Major components of the diatom flora maintain much of their regular seasonal cycle of flux maxima and minima during both sampling periods. Neritic resting spores (RS) of Chaetoceros dominate the diatom flux, mirroring the influence of coastal-upwelled waters at the CH trap site. Occurrence of pelagic diatoms species Fragilariopsis doliolus, members of the Rhizosoleniaceae, Azpeitia spp. and Nitzschia interruptestriata, secondary components of the assemblage, reflects the intermingling of warmer waters of the Subtropical Gyre. Dictyocha messanensis dominates the silicoflagellate association almost year-around, but Distephanus pulchra delivers ca. 60% of its annual production in less than three weeks during the winter peak. The siliceous thanatocoenosis is largely dominated by diatoms, whose assemblage shows significant qualitative and quantitative variations from north to south. Between 27° and 35°S, the dominance of RS Chaetoceros, Thalassionema nitzschioides var. nitzschioides and Skeletonema costatum reflects strong export production associated with occurrence of coastal upwelling. Both highest biogenic opal content and diatom concentration at 35° and 41°-43°S coincide with highest pigment concentrations along the Chilean coast. Predominance of the diatom species Thalassiosira pacifica and T. poro-irregulata, and higher relative contribution of the silicoflagellate Distephanus speculum at 41°-43°S suggest the influence of more nutrient-rich waters and low sea surface temperatures, probably associated with the Antarctic Circumpolar Water.