43 resultados para Krylov subspace
Resumo:
During the Arctic Coring Expedition (ACEX), a 428-m-thick sequence of Upper Cretaceous to Quaternary sediments was penetrated. The mineralogical composition of the upper 300 m of this sequence is presented here for the first time. Heavy and clay mineral associations indicate a major and consistent shift in provenance, from the Barents-Kara - western Laptev Sea region, characterized by presence of common clinopyroxene, to the eastern Laptev-East Siberian seas in the upper part of the section, characterized by common hornblende (amphibole). Sea ice originating from the latter source region must have survived at least one summer melt cycle in order to reach the ACEX drill site, if considering modern sea ice trajectories and velocities. This shift in mineral assemblages probably represents the onset of a perennial sea ice cover in the Arctic Ocean, which occurred at about 13 Ma, thus suggesting a coeval freeze in the Arctic and Antarctic regions.
Resumo:
Two decades ago, Merrihue (1964) reported 3He/4He ratios of >10**-4 in ferromagnetic separates from a Pacific deep ocean red clay and concluded that the high ratio is due to extraterrestrial debris amounting to ~1% of the sediment. A decade later Krylov et al. (1973) compiled 3He/4He isotopic data on ocean sediments measured in the Soviet Union and observed that the 3He/4He ratio is generally higher in pelagic sediments where the sedimentation rate is lower. They suggested that the high 3He/4He ratio was attributable to extraterrestrial materials which were concentrated in slowly accumulating ocean floor. However, these important discoveries were almost completely neglected until we re-examined the problem. We have measured 39 sediments from 12 different sites, 10 sites from the western to central Pacific and two sites from the Atlantic Ocean. We find 3He/4He ratios >5 * 10**-5 for six sites, well above the values generally observed in common terrestrial materials. The very high 3He/4He ratio in the sediments is probably due to input of extraterrestrial materials. Input of stratospheric dust of <1 p.p.m., which corresponds to a fallout rate of ~2,000 tons per year, can explain the observation.
Resumo:
The general knowledge of the hydrographic structure of the Southern Ocean is still rather incomplete since observations particularly in the ice covered regions are cumbersome to be carried out. But we know from the available information that thermohaline processes have large amplitudes and cover a wide range of scales in this part of the world ocean. The modification of water masses around Antarctica have indeed a worldwide impact, these processes ultimately determine the cold state of the present climate in the world ocean. We have converted efforts of the German and Russian polar research institutions to collect and validate the presently available temperature, salinity and oxygen data of the ocean south of 30°S latitude. We have carried out this work in spite of the fact that the hydrographic programme of the World Ocean Circulation Experiment (WOCE) will provide more new information in due time, but its contribution to the high latitudes of the Southern Ocean is quite sparse. The modified picture of the hydrographic structure of the Southern Ocean presented in this atlas may serve the oceanographic community in many ways and help to unravel the role of this ocean in the global climate system. This atlas could only be prepared with the altruistic assistance of many colleagues from various institutions worldwide who have provided us with their data and their advice. Their generous help is gratefully acknowledged. During two years scientists from the Arctic and Antarctic Research Institute in St. Petersburg and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven have cooperated in a fruitful way to establish the atlas and the archive of about 38749 validated hydrographic stations. We hope that both sources of information will be widely applied for future ocean studies and will serve as a reference state for global change considerations.