50 resultados para Isoxazolo[4,3-c]quinoline
Resumo:
The sedimentary architecture of polar gravel-beach ridges is presented and it is shown that ridge internal geometries reflect past wave-climate conditions. Ground-penetrating radar (GPR) data obtained along the coasts of Potter Peninsula (King George Island) show that beach ridges unconformably overlie the prograding strand plain. Development of individual ridges is seen to result from multiple storms in periods of increased storm-wave impact on the coast. Strand-plain progradation, by contrast, is the result of swash sedimentation at the beach-face under persistent calm conditions. The sedimentary architecture of beach ridges in sheltered parts of the coast is characterized by seaward-dipping prograding beds, being the result of swash deposition under stormy conditions, or aggrading beds formed by wave overtopping. By contrast, ridges exposed to high-energy waves are composed of seaward- as well as landward-dipping strata, bundled by numerous erosional unconformities. These erosional unconformities are the result of sediment starvation or partial reworking of ridge material during exceptional strong storms. The number of individual ridges which are preserved from a given time interval varies along the coast depending on the morphodynamic setting: sheltered coasts are characterized by numerous small ridges, whereas fewer but larger ridges develop on exposed beaches. The frequency of ridge building ranges from decades in the low-energy settings up to 1600 years under high-energy conditions. Beach ridges in the study area cluster at 9.5, 7.5, 5.5, and below 3.5 m above the present-day storm beach. Based on radiocarbon data, this is interpreted to reflect distinct periods of increased storminess and/or shortened annual sea-ice coverage in the area of the South Shetland Islands for the times around 4.3, c. 3.1, 1.9 ka cal BP, and after 0.65 ka cal BP. Ages further indicate that even ridges at higher elevations can be subject to later reactivation and reworking. A careful investigation of the stratigraphic architecture is therefore essential prior to sampling for dating purposes.
Resumo:
A high-resolution record of radiolarian faunal changes from Site Y8 south of the Subtropical Front (STF), offshore eastern New Zealand, provides insight into the paleoceanographic history of the last 265 kyrs. Quantitative analysis of radiolarian paleotemperature indicators and radiolarian-based sea surface temperature (SST) estimates reveal distinct shifts during glacial-interglacial (G-I) climate cycles encompassing marine isotope stages (MIS) 8-1. Faunas at Site Y8 are abundant and diverse and consist of a mixture of species typical of the subantarctic, transitional and subtropical zones which is characteristic of subantarctic waters just south of the STF. During interglacials, diverse radiolarian faunas have increased numbers of warm-water taxa (not, vert, similar 15%) while cool-water taxa decrease to not, vert, similar 11% of the assemblage. Warmest climate conditions occurred during MIS 5.5 and the early Holocene Climatic Optimum (HCO) at the onset of MIS 1 where SSTs reach maxima of 12.8 and 12.9 °C, respectively. This suggests that temperatures during the HCO were comparable to the Eemian, one of the warmest interglacial intervals of the Late Quaternary. Glacials are characterized by less diverse radiolarian faunas with cool-water taxa increasing to 49% of the assemblage. Coolest climate conditions occurred in MIS 4 and 2 where SSTs are reduced to 5.4 °C and 4.3 °C, respectively. Radiolarian faunal changes and SST estimates clearly identify major water masses and oceanic fronts in the offshore eastern New Zealand area. During warmest MIS 5.5 and early MIS 1 substantial influence of northern-sourced Subtropical Surface Water (STW) is evident at Site Y8. This implies southward incursions of STW around the eastern crest of Chatham Rise with the STF displaced towards higher latitudes and spinning off eddies as far south as Campbell Plateau. Additionally, increased flow of the Southland Current (SC) might have enhanced the local occurrence of warm-water radiolarians derived from the subtropical Tasman Sea. Coolest glacials are marked by a strong inflow of cool, southern-sourced waters at Site Y8 indicating a more vigorous flow along the Subantarctic Front (SAF).
Resumo:
Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater d18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30'S, 100°08'E, and GeoB 10038-4, 5°56'S, 103°15'E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2-3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater d18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater ?18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling-Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.