97 resultados para Indicators of soil quality


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March and October 2008. In October 2008, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March 2006. In October 2006 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Measurements from the management experiment are separated into 0 to 0.08 m and 0.08 to 0.15 m. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March and October 2007. In March and in October 2007 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to analyze households' attitude toward flood risk in Cotonou in the sense to identify whether they are willing or not to leave the flood-prone zones. Moreover, the attitudes toward the management of wastes and dirty water are analyzed. The data used in this study were obtained from two sources: the survey implemented during March 2011 on one hundred and fifty randomly selected households living in flood-prone areas of Cotonou, and Benin Living Standard Survey of 2006 (Part relative to Cotonou on 1,586 households). Moreover, climate data were used in this study. Multinomial probability model is used for the econometric analysis of the attitude toward flood risk. While the attitudes toward the management of wastes and dirty water are analyzed through a simple logit. The results show that 55.3% of households agreed to go elsewhere while 44.7% refused [we are better-off here (10.67%), due to the proximity of the activities (19.33), the best way is to build infrastructures that will protect against flood and family house (14.67%)]. The authorities have to rethink an alternative policy to what they have been doing such as building socio-economic houses outside Cotonou and propose to the households that are living the areas prone to inundation. Moreover, access to formal education has to be reinforced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past climate evolution of southwestern Africa is poorly understood and interpretations of past hydrological changes are sometimes contradictory. Here we present a record of leaf-wax dD and View the MathML source taken from a marine sediment core at 23°S off the coast of Namibia to reconstruct the hydrology and C3 versus C4 vegetation of southwestern Africa over the last 140 000 years (140 ka). We find lower leaf-wax dD and higher View the MathML source (more C4 grasses), which we interpret to indicate wetter Southern Hemisphere (SH) summer conditions and increased seasonality, during SH insolation maxima relative to minima and during the last glacial period relative to the Holocene and the last interglacial period. Nonetheless, the dominance of C4 grasses throughout the record indicates that the wet season remained brief and that this region has remained semi-arid. Our data suggest that past precipitation increases were derived from the tropics rather than from the winter westerlies. Comparison with a record from the Congo Basin indicates that hydroclimate in southwestern Africa has evolved in antiphase with that of central Africa over the last 140 ka.

Relevância:

100.00% 100.00%

Publicador: