109 resultados para Igneous complex of Sines
Resumo:
The sill and pillow complex cored on Deep Sea Drilling Project Leg 61 (Site 462) is divided into two groups, A and B types, on the basis of chemical composition and volcanostratigraphy. The A-type basalt is characterized by a higher FeO*/MgO ratio and abundant TiO2, whereas the B-type basalt is characterized by a lower FeO*/MgO ratio and scarcity of TiO2. The A type is composed of sills interbedded with hyaloclastic sediments, and the B type consists of basalt sills and pillow basalt with minor amounts of sediment. However, the structure of pillow basalts in the B type is atypical; they might be eruptive. From paleontological study of the interbedded sediments and radiometric age determination of the basalt, the volcanic event of A type is assumed to be Cenomanian to Aptian, and that of B type somewhat older. The oceanic crust in the Nauru Basin was assumed to be Oxfordian, based on the Mesozoic magnetic anomaly. Consequently, two events of intraplate volcanism are recognized. It is thus assumed that the sill-pillow complex did not come from a normal oceanic ridge, and that normal oceanic basement could therefore underlie the complex. The Site 462 basalts are quartz-normative, and strongly hypersthene-normative, and have a higher FeO*/MgO ratio and lower TiO2 content. Olivine from the Nauru Basin basalts has a lower Mg/(Mg + Fe**2+) ratio (0.83-0.84) and coexists with spinel of lower Mg/(Mg + Fe**2+) ratio when compared to olivine-spinel pairs from mid-ocean ridge (MAR) basalt. The glass of spinel-bearing basalts has a higher FeO*/(FeO* + MgO) ratio (0.58-0.60) than that of MAR (<0.575). Therefore, the Nauru Basin basalts are chemically and mineralogically distinct from ocean-ridge tholeiite. That the Nauru Basin basalts are quartz-normative and strongly hypersthene-normative and have a lower TiO2 content suggests that the basaltic liquids of Site 462 were generated at shallower depths (<5 kbar) than ocean-ridge tholeiite: Site 462 basalts are similar to basalts from the Manihiki Plateau and the Ontong-Java Plateau, but different from Hawaiian tholeiite of hot-spot type, with lower K2O and TiO2 content. We propose a new type of basalt, ocean-plateau tholeiite, a product of intraplate volcanism.
Resumo:
The tholeiitic basalts and microdolerites that comprise the Cretaceous igneous complex in the Nauru Basin in the western equatorial Pacific have moderate ranges in initial 87Sr/86Sr (0.70347 - 0.70356), initial 143Nd/144Nd (0.51278 - 0.51287), and measured 206Pb/204Pb (18.52 - 19.15), 207Pb/204Pb (15.48 - 15.66) and 208Pb/204Pb (38.28 - 38.81). These isotopic ratios overlap with those of both oceanic island basalts (OIB) and South Atlantic and Indian mid-ocean ridge basalts (MORB). However, the petrography, mineralogy, and bulk rock chemistry of the igneous complex are more similar to MORB than to OIB. Also, the rare earth element contents of Nauru Basin igneous rocks are uniformly depleted in light elements (La/Sm(ch) < 1) indicative of a mantle source compositionally similar to that of MORB. These results suggest that the igneous complex is the top of the original ocean crust in the Nauru Basin, and that the notion that the crust must be 15 to 35 m.y. older based on simple extrapolation and identification of the M-sequence magnetic lineations (Larson et al., 1981, doi:10.2973/dsdp.proc.61.1981; Moberly et al., 1985, doi:10.2973/dsdp.proc.81.1984) may be invalid because of a more complicated tectonic setting. The igneous complex most probably was extruded from an ocean ridge system located near the anomalously hot, volcanically active, and isotopically distinct region in the south central Pacific which has been in existence since c. 120 Ma.
Resumo:
Subduction related mafic/ultramafic complexes marking the suture between the Wilson Terrane and the Bowers Terrane in northern Victoria Land (Antarctica) are well-suited for evaluating the magmatic and structural evolu- tion at the Palaeo-Pacific continental margin of Gondwana. One of these intru- sions is the "Tiger Gabbro Complex" (TGC), which is located at the southern end of the island-arc type Bowers Terrane. The TGC is an early Palaeozoic island-arc related layered igneous complex characterized by extraordinarly fresh sequences of ultramafic, mafic and evolved lithologies and extensive development of high-temperature high-strain zones. The goal of the present study is to establish the kinematic, petrogenetic and temporal development of the TGC in order to evaluate the magmatic and structural evolution of the deep crustal roots of this Cambrian-aged island-arc. Fieldwork during GANOVEX X was carried out to provide insight into: (i) the spatial relations between the different igneous lithologies of the TGC, (ii) the nature of the contact between the TGC and Bowers Terrane, and (iii) the high-temperature shear zones exposed in parts of the TGC. Here, we report the results of detailed field and petrological observations combined with new geochronological data. Based on these new data, we tentatively propose a petrogenetic-kinematic model for the TGC, which involves a two-phase evolution during the Ross orogeny. These phases can be summarized as: (i) an early phase (maximum age c. 530 Ma) involving tectono-magmatic processes that were active at the deep crustal level represented by the TGC within the Bowers island arc and within a general NE-SW directed contractional regime and (ii) a late phase (maximum age c. 490 Ma) attributed to the late Ross orogenic intrusion of the TGC into the higher-crustal metasedimentary country rocks of the Bowers Terrane under NE-SW directed horizontal maximum stress and subsequent cooling.
Resumo:
Rocks of the lower sheeted dike complex of Hole 504B sampled during Leg 140 were analyzed for major and trace element compositions to investigate the effects of igneous processes and hydrothermal alteration on the compositions of the rocks. The rocks are relatively uniform in composition and similar to the shallower dikes. They are moderately evolved mid-ocean-ridge basalts (MORB) with relatively high MgO (7.9-10 wt%) and Mg# (0.60-0.70), and have unusually low incompatible element contents (TiO2 = 0.42-1.1 wt%, Zr = 23-62 ppm). Discrete compositional intervals in the hole reflect varying degrees of differentiation, and olivine and plagioclase accumulation in the rocks, and may be related to injection of packets of dikes having similar compositions. Systematic depletions of total REE, Zr, Y, TiO2, and P2O5 in centimeter-size patches are most likely attributed to exclusion of highly differentiated, late-stage interstitial liquids from small portions of the rocks. The rocks exhibit increased H2O+ reflecting hydrothermal alteration. Replacement of primary plagioclase by albite and oligoclase led to local gains of Na2O, losses of CaO, and slightly positive Eu anomalies. Some mobility of P2O5 led to minor increases and decreases in P2O5 contents, and some local mobility of Ti may have occurred during alteration of titanomagnetite to titanite. Higher temperatures of alteration in the lower sheeted dikes led to breakdown of pyroxene and sulfide minerals and losses of Zn, Cu, and S to hydrothermal fluids. Later addition of anhydrite to the rocks in microfractures and replacing plagioclase caused local increases in sulfur contents. The lower sheeted dikes are a major source of metals to hydrothermal fluids for the formation of metal sulfide deposits on and within the seafloor.
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.
Resumo:
The aim of this project was a petrogeochemical study of igneous rocks in the areas of the Mohns and Knipovich Ridges, both being the northern extensions of the Mid-Atlantic Ridge (MAR), using data available for quenching glass samples collected during Cruises 36 and 38 of R/V Akademic Mstislav Keldysh and during Cruise 15 of R/V Professor Logachev. Results of igneous rock studying from the Mohns and Knipovich Ridges at the background of evolution of the total North Atlantic Province, which had been identified earlier from tectonic and geophysical data, showed that igneous rocks of the Knipovich Ridge can be ranked as shallow tholeiites, primary melts of which were relatively rich in Na and Si and poor in Fe. This type of magma is characteristic of colder regions of the oceanic lithosphere. Its occurrence in the Knipovich Ridge and its potential propagation up to the Gakkel Ridge suggest that igneous rocks of this region originated under conditions of passive spreading in contrast to the MAR region in vicinity of Iceland and Azores, where substantial contribution of hotter material of a rising plume contributed to formation of the oceanic crust. The North Atlantic Ocean is the youngest province in terms of ocean-floor opening. Geologically and geophysically it is one of well studied regions of the World Ocean. Nevertheless some basic key items of its origin still remain to be clarified. In 1975 Scatler et al. proved specifics of this region manifested in growth of the gravity field, and also in relative height of the ocean floor in the region of 33-70°N, which was associated by them with rise of the hotter mantle, as compared with common regions of the Mid-Atlantic Ridge. Later this view was confirmed by character of magmatism, which differed in depth of generation and by melting degree of the resulting primary magma. Uniqueness of the North Atlantic region was also proved by the fact that this region was marked by extensive geochemical anomalies associated with Azores, Iceland, and Jan Mayen. All of these data allow to consider the northern part of the MAR (north of 33°N) as an united global geotectonic province. The Mohns and Knipovich Ridges located north of Iceland locate at the northern end of this province. This is the least known region. Therefore, new data for ridge areas of 73-77°N are needed for more complete geologic history of the Arctic Basin. The aim of this study was to carry out a complex comparison of magmatism at the Mohns and Knipovich Ridges with magmatism at large segments of the MAR northern province and to reconstruct mechanisms of primary magma formation, as well as conditions of their fractionation. This paper was based on results of studying quenched glasses, which reflect evolution of melt in the course of its formation.
Resumo:
Major and trace elements, mineral chemistry, and Sr-Nd isotope ratios are reported for representative igneous rocks of Ocean Drilling Program Sites 767 and 770. The basaltic basement underlying middle Eocene radiolarianbearing red clays was reached at 786.7 mbsf and about 421 mbsf at Sites 767 and 770, respectively. At Site 770 the basement was drilled for about 106 m. Eight basaltic units were identified on the basis of mineralogical, petrographical, and geochemical data. They mainly consist of pillow lavas and pillow breccias (Units A, B, D, and H), intercalated with massive amygdaloidal lavas (Units Cl and C2) or relatively thin massive flows (Unit E). Two dolerite sills were also recognized (Units F and G). All the rocks studied show the effect of low-temperature seafloor alteration, causing almost total replacement of olivine and glass. Calcite, clays, and Fe-hydroxides are the most abundant secondary phases. Chemical mobilization due to the alteration processes has been evaluated by comparing elements that are widely considered mobile during halmyrolysis (such as low-field strength elements) with those insensitive to seafloor alteration (such as Nb). In general, MgO is removed and P2O5 occasionally enriched during the alteration of pillow lavas. Ti, Cs, Li, Rb, and K, which are the most sensitive indicators of rock/seawater interaction, are generally enriched. The most crystalline samples appear the least affected by chemical changes. Plagioclase and olivine are continuously present as phenocrysts, and clinopyroxene is confined in the groundmass. Textural and mineralogical features as well as crystallization sequences of Site 770 rocks are, in all, analogous to typical mid-ocean-ridge basalts (MORBs). Relatively high content of compatible trace elements, such as Ni and Cr, indicate that these rocks represent nearly primitive or weakly fractionated MORBs. All the studied rocks are geochemically within the spectrum of normal MORB compositional variation. Their Sr/Nd isotopic ratios plot on the mantle array (87Sr/87Sr 0.70324-0.70348 with 143Nd/144Nd 0.51298-0.51291) outside the field of Atlantic and Pacific MORBs. However, Sr and Nd isotopes are typical of both Indian Ocean MORBs and of some back-arc basalts, such as those of Lau Basin. The mantle source of Celebes basement basalts does not show a detectable influence of a subduction-related component. The geochemical and isotopic data so far obtained on the Celebes basement rocks do not allow a clear discrimination between mid-ocean ridge and back-arc settings.
Resumo:
Distribution patterns, petrography, whole-rock and mineral chemistry, and shape and fabric data are described for the most representative basement lithologies occurring as clasts (granule to bolder grain-size class) from the 625 m deep CRP-2/2A drillcore. A major change in the distribution pattern of the clast types occurs at c. 310 mbsf., with granitoid-dominated clasts above and mainly dolerite clasts below; moreover, compositional and modal data suggest a further division into seven main detrital assemblages or petrofacies. In spite of this variability, most granitoid pebbles consist of either pink or grey biotite±hornblende monzogranites. Other less common and ubiquitous lithologies include biotite syenogranite, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries (very common below 310 mbsf), microgranite, and subordinately, monzogabbro, Ca-silicate rocks, biotite-clinozoisite schist and biotite orthogneiss (restricted to the pre-Pliocene strata). The ubiquitous occurrence of biotite±hornblende monzogranite pebbles in both the Quaternary-Pliocene and Miocene-Oligocene sections, apparently reflects the dominance of these lithologies in the onshore basement, and particularly in the Cambro-Ordovician Granite Harbour Igneous Complex which forms the most extensive outcrop in southern Victoria Land. The petrographical features of the other CRP-2/2A pebble lithologies are consistent with a supply dominantly from areas of the Transantarctic Mountains facing the CRP-2/2A site, and they thus provide further evidence of a local provenance for the supply of basement clasts to the CRP-2/2A sedimentary strata.