44 resultados para INTERNAL WAVES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mauritanian coastal area is one of the most biologically productive upwelling regions in the world ocean. Shipboard observations carried out during maximum upwelling season and short-term moored observations are used to investigate diapycnal mixing processes and to quantify diapycnal fluxes of nutrients. The observations indicate strong tide-topography interactions that are favored by near-critical angles occurring on large parts of the continental slope. Moored velocity observations reveal the existence of highly nonlinear internal waves and bores and levels of internal wave spectra are strongly elevated near the buoyancy frequency. Dissipation rates of turbulent kinetic energy at the slope and shelf determined from microstructure measurements in the upper 200 m averages to ? = 5 × 10-8 W kg-1. Particularly elevated dissipation rates were found at the continental slope close to the shelf break, being enhanced by a factor of 100 to 1000 compared to dissipation rates farther offshore. Vertically integrated dissipation rates per unit volume are strongest at the upper continental slope reaching values of up to 30 mW m-2. A comparison of fine-scale parameterizations of turbulent dissipation rates for shelf regions and the open ocean to the measured dissipation rates indicates deficiencies in reproducing the observations. Diapycnal nitrate fluxes above the continental slope at the base of the mixed layer yielding a mean value of 12 × 10-2 µmol m-2 s-1 are amongst the largest published to date. However, they seem to only represent a minor contribution (10% to 25%) to the net community production in the upwelling region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This data set includes the profiling measurements collected from ship during the cruise HM 2012610 onboard the Research Vessel Håkon Mosby. The cruise was conducted under the project entitled "Faroe Bank Channel Overflow: Dynamics and Mixing Research", with an objective to investigate the mixing and entrainment of the dense oceanic overflow from the Faroe Bank Channel. The profiling measurements delivered with this data set include conventional conductivity-temperature-depth (CTD) measurements, current profile measurements using a lowered acoustic Doppler Current Profiler (LADCP) system and ocean microstructure measurements using a vertical microstructure profiler (VMP2000). The observational programme was designed to measure turbulence and mixing in the overflow plume which, in addition to the shear-induced mixing at the plume-ambient interface, is hypothesized to be influenced by several processes including mesoscale eddies, secondary circulation and internal waves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Macro- and meiobenthic abundance and biomass as well as metabolic activity (respiration, ETS activity) have been studied along a transect ranging from 130 to 3000 m water depth off northern Morocco (35° N) during "Meteor" cruise No. 53 (1980). The distribution of chloroplastic pigment concentration (chlorophyll a, pheophytins) in the sediment has been investigated as a measure of sedimented primary organic matter. High chloroplastic pigment concentrations were found on the shelf and around the shelf break, but values declined rapidly between 200 and 600 m depth. Below 1200 m pigment concentrations remained at a relatively uniform low level. Macrobenthic abundance and biomass (wet weight) decreased with increasing water depth and with distance from the shore. Significant changes occurred between the shelf and upper slope and below 2000 m depth. Meiobenthic abundance and biomass (ash free dry weight) followed the same general pattern, but changes were found below 400 and 800 m depth. In the depth range of 1200 to 3000 m values differ only slightly. Meiofauna abundance and biomass show a good correlation with the sedimentary chloroplastic pigment concentrations. Respiratory activity of sediment cores, measured by a shipboard technique at ambient temperatures, decreased with water depth and shows a good correlation with the pigment concentrations. ETS activity was highest on the shelf and decreased with water depth, with significant changes between 200 and 400 m, and below 1200 m depth, respectively. Activity was generally highest in the top 5 cm of the sediment and was measurable, at all stations, down to 15 cm sediment depth. Shelf and upper slope stations exhibited a vertical distribution pattern of ETS activity in the sediment column, different from that of deeper stations. The importance of biological activity measurements as an estimate of productivity is discussed. To prove the thesis that differences in benthic abundance, biomass and activity reflect differences in pelagic surface primary production, in the case of the NW-African coast caused by different upwelling intensities, the values from 35° N were compared with data from 21° N (permanent upwelling activity) and 17° N (ca. 9 months upwelling per year). On the shelf and upper slope (< 500 m) hydrographical conditions (currents, internal waves) influence the deposition of organic matter and cause a biomass minimum between 200 and 400 m depth in some regions. But, in general, macrobenthic abundance and biomass increases with enhanced upwelling activity and reaches a maximum in the area off Cape Blanc (21° N). On the shelf and in the shelf break region meiofauna densities are higher at 35° N in comparison to 21° N; but in contrast to the decreasing meiofauna abundance with increasing water depth at 35° N, an abundance maximum between 400 and 1200 m depth is formed in the Cape Blanc region; this maximum coincides with the maximum of sedimentary chloroplastic pigment equivalents. The comparison of ETS activities between 35° N and 21° N shows on the shelf activity at 21° N is up to 14 times higher and on the slope 4-9 times higher, which demonstrates that benthic activity responds to the surface productivity regime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-water corals form prominent reef ecosystems along ocean margins that depend on suspended resources produced in surface waters. In this study, we investigated food processing of 13C and 15N labelled bacteria and algae by the cold-water coral Lophelia pertusa. Coral respiration, tissue incorporation of C and N and metabolic-derived C incorporation into the skeleton were traced following the additions of different food concentrations (100, 300, 1300 µg C/l) and two ratios of suspended bacterial and algal biomass (1:1, 3:1). Respiration and tissue incorporation by L. pertusa increased markedly following exposure to higher food concentrations. The net growth efficiency of L. pertusa was low (0.08±0.03), which is consistent with their slow growth rates. The contribution of algae and bacteria to total coral assimilation was proportional to the food mixture in the two lowest food concentrations, but algae were preferred over bacteria as food source at the highest food concentration. Similarly, the stoichiometric uptake of C and N was coupled in the low and medium food treatment, but was uncoupled in the high food treatment and indicated a comparatively higher uptake or retention of bacterial carbon as compared to algal nitrogen. We argue that behavioural responses for these small-sized food particles, such as tentacle behaviour, mucus trapping and physiological processing, are more likely to explain the observed food selectivity as compared to physical-mechanical considerations. A comparison of the experimental food conditions to natural organic carbon concentrations above CWC reefs suggests that L. pertusa is well adapted to exploit temporal pulses of high organic matter concentrations in the bottom water caused by internal waves and down-welling events.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During R/V Meteor-cruise no. 30 4 moorings with 17 current meters were placed on the continental slope of Sierra Leone at depths between 81 and 1058 meters. The observation period started on March 8, 1973, 16.55 hours GMT and lasted 19 days for moorings M30_068MOOR, M30_069MOOR, M30_070MOOR on the slope and 9 days for M30_067MOOR on the shelf. One current meter recorded at location M30_067MOOR for 22 days. Hydrographic data were collected at 32 stations by means of the "Kieler Multi-Meeressonde". Harmonic analysis is applied to the first 15 days of the time series to determine the M2 and S2 tides. By vertically averaging of the Fourier coefficients the field of motion is separated into its barotropic and its baroclinic component. The expected error generated by white Gaussian noise is estimated. To estimate the influence of the particular vertical distribution of the current meters, the barotropic M2 tide is calculated by ommitting and interchanging time series of different moorings. It is shown that only the data of moorings M30_069MOOR, M30_070MOOR and M30_067MOOR can be used. The results for the barotropic M2 tide agree well with the previous publications of other authors. On the slope at a depth of 1000 m there is a free barotropic wave under the influence of the Coriolis-force propagating along the slope with an amplitude of 3.4 cm S**-1. On the shelf, the maximum current is substantially greater (5.8 cm s**-1) and the direction of propagation is perpendicular to the slope. As for the continental slope a separation into different baroclinic modes using vertical eigenmodes is not reasonable, an interpretation of the total baroclinic wave field is tried by means of the method of characteristis. Assuming the continental slope to generate several linear waves, which superpose, baroclinic tidal ellipses are calculated. The scattering of the direction of the major axes M30_069MOOR is in contrast to M30_070MOOR, where they are bundled within an angle of 60°. This is presumably caused by the different character of the bottom topography in the vicinity of the two moorings. A detailed discussion of M30_069MOOR is renounced since the accuracy of the bathymetric chart is not sufficient to prove any relation between waves and topography. The bundeling of the major axes at M30_070MOOR can be explained by the longslope changes of the slope, which cause an energy transfer from the longslope barotropic component to the downslope baroclinic component. The maximum amplitude is found at a depth of 245 m where it is expected from the characteristics originating at the shelf edge. Because of the dominating barotropic tide high coherence is found between most of the current meters. To show the influence of the baroclinic tidal waves, the effect of the mean current is considered. There are two periods nearly opposite longshore mean current. For 128 hours during each of these periods, starting on March 11, 05.00, and March 21, 08.30, the coherences and energy spectra are calculated. The changes in the slope of the characteristics are found in agreement with the changes of energy and coherence. Because of the short periods of nearly constant mean current, some of the calculated differences of energy and coherence are not statistically significant. For the M2 tide a calculation of the ratios of vertically integrated total baroclinic energy and vertically integrated barotropic kinetic energy is carried out. Taking into account both components (along and perpendicular to the slope) the obtained values are 0.75 and 0.98 at the slope and 0.38 at the shelf. If each component is considered separately, the ratios are 0.39 and 1.16 parallel to the slope and 5.1 and 15.85 for the component perpendicular to it. Taking the energy transfer from the longslope component to the doenslope component into account, a simple model yields an energy-ratio of 2.6. Considering the limited application of the theory to the real conditions, the obtained are in agreement with the values calculated by Sandstroem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the morpho-sedimentary characterization and interpretations of the assemblage of landforms of the East Greenland continental slope and Greenland Basin, based on swath bathymetry and sub-bottom TOPAS profiles. The interpretation of landforms reveals the glacial influence on recent sedimentary processes shaping the seafloor, including mass-wasting and turbidite flows. The timing of landform development points to a predominantly glacial origin of the sediment supplied to the continental margin, supporting the scenario of a Greenland Ice Sheet extending across the continental shelf, or even to the shelf-edge, during the Last Glacial Maximum (LGM). Major sedimentary processes along the central section of the eastern Greenland Continental Slope, the Norske margin, suggest a relatively high glacial sediment input during the LGM that, probably triggered by tectonic activity, led to the development of scarps and channels on the slope and debris flows on the continental rise. The more southerly Kejser Franz Josef margin has small-scale mass-wasting deposits and an extensive turbidite system that developed in relation to both channelised and unconfined turbidity flows which transferred sediments into the deep Greenland Basin.