127 resultados para HOMOALLYLIC ALCOHOLS
Resumo:
Selective degradation of organic matter in sediments is important for reconstructing past environments and understanding the carbon cycle. Here, we report on compositional changes between and within lipid classes and kerogen types (represented by palynomorph groups) in relation to the organic matter flux to the sea floor and oxidation state of the sediments since the early Holocene for central Eastern Mediterranean site ABC26. This includes the initially oxic but nowadays anoxic presapropelic interval, the still unoxidised lower part of the organic rich S1 sapropel, its postdepositionally oxidised and nowadays organic-poor upper part as well as the overlying postsapropelic sediments which have always been oxic. A general ~ 2.3 times increase in terrestrial and marine input during sapropel formation is estimated on the basis of the total organic carbon (TOC), pollen, spore, dinoflagellate cyst, n-alkane, n-alkanol and n-alkanoic acid concentration changes in the unoxidised part of the sapropel. The long-chain alkenones, 1,15 diols and keto-ols, loliolides and sterols indicate that some plankton groups, notably dinoflagellates, may have increased much more. Apart from the terrestrial and surface water contributions to the sedimentary organic matter, anomalous distributions and preservation of some C23-C27 alkanes, alkanols and alkanoic acids have been observed, which are interpreted as a contribution by organisms living in situ. Comparison of the unoxidised S1 sapropel with the overlying oxidised sapropel and the organic matter concentration profiles in the oxidised postsapropelic sediments demonstrates strong and highly selective aerobic degradation of lipids and palynomorphs. There seems to be a fundamental difference in degradation kinetics between lipids and pollen which may be possibly related with the absence of sorptive preservation as a protective mechanism for palynomorph degradation. The n-alkanes, Impagidinium, and Nematosphaeropsis are clearly more resistant than TOC. The n-alkanols and n-carboxylic acids are about equally resistant whereas the pollen, all other dinoflagellate cysts and other lipids appear to degrade considerably faster, which questions the practice of normalising to TOC without taking diagenesis into account. Selective degradation also modifies the relative distributions within lipid classes, whereby the longer-chain alkanes, alcohols and fatty acids disappear faster than their shorter-chain equivalents. Accordingly, interpretation of lipid and palynomorph assemblages in terms of pre- or syndepositional environmental change should be done carefully when proper knowledge of the postdepositional preservation history is absent. Two lipid-based preservation proxies are tested the diol-keto-ol oxidation index based on the 1,15C30 diol and keto-ols (DOXI) and the alcohol preservation index (API) whereby the former seems to be the most promising.
Resumo:
We investigated the solvent-extractable hydrocarbons, ketones, alcohols, and carboxylic acids of two Quaternary sediments from the Middle America Trench (Sections 487-2-3 and 491-1-5). These lipids are derived from a mixed input of autochthonous and allochthonous materials, with minor contributions from thermally mature sources. Their compositions are typical of those of immature Quaternary marine sediments, and their lipid distributions show many similarities to those of Japan Trench sediments.
Resumo:
Siwalik paleosol and Bengal Fan sediment samples were analyzed for the abundance and isotopic composition of n-alkanes in order to test for molecular evidence of the expansion of C4 grasslands on the Indian subcontinent. The carbon isotopic compositions of high-molecular-weight alkanes in both the ancient soils and sediments record a shift from low d13C values (ca. -30 per mil) to higher values (ca. -22 per mil) prior to 6 Ma. This shift is similar in magnitude to that recorded by paleosol carbonate and fossil teeth, and is consistent with a relatively rapid transition from dominantly C3 vegetation to an ecosystem dominated by C4 plants typical of semi-arid grasslands. The n-alkane values from our paleosol samples indicate that the isotopic change began as early as 9 Ma, reflecting either a growing contribution of C4 plants to a dominantly C3 biomass or a decrease in water availability to C3 plants. Molecular and isotopic analyses of other compounds, including n-alcohols and low-molecular weight n-alkanes indicate paleosol organic matter contains contributions from a mixture of sources, including vascular plants, algae and/or cyanobacteria and microorganisms. A range of inputs is likewise reflected in the isotopic composition of the total organic carbon from these samples. In addition, the n-alkanes from two samples show little evidence for pedegenic inputs and we suggest the compounds were derived instead from the paleosol's parent materials. We suggest the record of vegetation in ancient terrestrial ecosystems is better reconstructed using isotopic signatures of molecular markers, rather than bulk organic carbon. This approach provides a means of expanding the spatial and temporal records of C4 plant biomass which will help to resolve possible tectonic, climatic or biological controls on the rise of this important component of the terrestrial biosphere.
Resumo:
Low-molecular-weight (LMW) alcohols are produced during the microbial degradation of organic matter from precursors such as lignin, pectin, and carbohydrates. The biogeochemical behavior of these alcohols in marine sediment is poorly constrained but potentially central to carbon cycling. Little is known about LMW alcohols in sediment pore waters because of their low concentrations and high water miscibility, both of which pose substantial analytical challenges. In this study, three alternative methods were adapted for the analysis of trace amounts of methanol and ethanol in small volumes of saline pore waters: direct aqueous injection (DAI), solid-phase microextraction (SPME), and purge and trap (P&T) in combination with gas chromatography (GC) coupled to either a flame ionization detector (FID) or a mass spectrometer (MS). Key modifications included the desalination of samples prior to DAI, the use of a threaded midget bubbler to purge small-volume samples under heated conditions and the addition of salt during P&T. All three methods were validated for LMW alcohol analysis, and the lowest detection limit (60 nM and 40 nM for methanol and ethanol, respectively) was achieved with the P&T technique. With these methods, ambient concentrations of volatile alcohols were determined for the first time in marine sediment pore waters of the Black Sea and the Gulf of Mexico. A strong correlation between the two compounds was observed and tentatively interpreted as being controlled by similar sources and sinks at the examined stations.
Resumo:
Triassic (Carnian-Rhaetian) continental margin sediments from the Wombat Plateau off northwest Australia (Sites 759, 760, 761, and 764) contain mainly detrital organic matter of terrestrial higher plant origin. Although deposited in a nearshore deltaic environment, little liptinitic material was preserved. The dominant vitrinites and inertinites are hydrogen-lean, and the small quantities of extractable bitumen contain w-alkanes and bacterial hopanoid hydrocarbons as the most dominant single gas-chromatography-amenable compounds. Lower Cretaceous sediments on the central Exmouth Plateau (Sites 762 and 763) farther south in general have an organic matter composition similar to that in the Wombat Plateau sediments with the exception of a smaller particle size of vitrinites and inertinites, indicating more distal transport and probably deposition in deeper water. Nevertheless, organic matter preservation is slightly better than in the Triassic sediments. Long-chain fatty acids, as well as aliphatic ketones and alcohols, are common constituents in the Lower Cretaceous sediments in addition to n-alkanes and hopanoid hydrocarbons. Thin, black shale layers at the Cenomanian/Turonian boundary, although present at several sites (Sites 762 and 763 on the Exmouth Plateau, Site 765 in the Argo Abyssal Plain, and Site 766 on the continental margin of the Gascoyne Abyssal Plain), are particularly enriched in organic matter only at Site 763 (up to 26%). These organic-matter-rich layers contain mainly bituminite of probable fecal-pellet origin. Considering the high organic carbon content, the moderate hydrogen indices of 350-450 milligrams of hydrocarbon-type material per gram of Corg, the maceral composition, and the low sedimentation rates in the middle Cretaceous, we suggest that these black shales were accumulated in an area of oxygen-depleted bottom-water mass (oceanwide reduced circulation?) underlying an oxygen-rich water column (in which most of the primary biomass other than fecal pellets is destroyed) and a zone of relatively high bioproductivity. Differences in organic matter accumulation at the Cenomanian/Turonian boundary at different sites off northwest Australia are ascribed to regional variations in primary bioproductivity.
Resumo:
The Darwin Mounds are a series of small (<=5 m high, 75-100 m diameter) sandy features located in the northern Rockall Trough. They provide a habitat for communities of Lophelia pertusa and associated fauna. Suspended particulate organic matter (sPOM) reaching the deep-sea floor, which could potentially fuel this deep-water coral (DWC) ecosystem, was collected during summer 2000. This was relatively "fresh" (i.e. dominated by labile lipids such as polyunsaturated fatty acids) and was derived largely from phytoplankton remains and faecal pellets, with contributions from bacteria and microzooplankton. Labile sPOM components were enriched in the benthic boundary layer (~10 m above bottom (mab)) relative to 150 mab. The action of certain benthic fauna that are exclusively associated with the DWC ecosystem (e.g. echiuran worms) leads to the subduction of fresh organic material into the sediments. The mound surface sediments are enriched in organic carbon, relative to off-mound sites. There is no evidence for hydrocarbon venting at this location.
Resumo:
"Bound" and "free" solvent-extractable lipids have been examined from Sections 440A-7-6, 440B-3-5, 440B-8-4, 440B-68-2, and 436-11-4. The compound classes studied include aliphatic and aromatic hydrocarbons, ketones, alcohols, and carboxylic acids. Carotenoids and humic acids have also been examined. The quantitative results are considered in terms of input indicators, diagenesis parameters, and structural classes. A difference in input is deduced across the Japan Trench, with a higher proportion of autochthonous components on the western inner trench slope compared with the more easterly, outer trench, wall and greater input in the early Pleistocene than in the Miocene. A variety of diagenetic transformations is observed at Site 440 as sample depth increases. Results are compared with those of samples from Atlantic Cretaceous sediments and from the Walvis Bay high productivity area.
Resumo:
Oxidized intervals of five organic-rich Madeira Abyssal Plain (MAP) turbidites deposited during the Miocene, Pliocene, and Pleistocene all displayed comparable major loss of total organic carbon (TOC) (84 ± 3.1%) accompanied by a negative isotopic (d13C) shift ranging from -0.3 to -2.9 per mil. Major but significantly lower loss of total nitrogen (Ntot, 61 ± 7.1%) also occurred, leading to a decrease in TOC relative to Ntot (C/Ntot) and a +1.3 to 2.7 per mil Ntot isotopic (d15N) shift. Compound specific isotopic measurements on plant wax n-alkanes indicate the terrestrial organic component in the unoxidized deposits is 13C-enriched owing to significant C4 contribution. Selective preservation of terrestrial relative to marine organic carbon could account for the d13C behavior of TOC upon oxidation but only if a 13C-depleted component of the bulk terrestrial signal is selectively preserved in the process. Although the C/Ntot decrease and positive d15N shift seems inconsistent with selective terrestrial organic preservation, results from analysis of a Modern eolian dust sample collected in the vicinity indicate these observations are compatible. Regardless of the specific explanation for these isotopic observations, however, our findings provide evidence that paleoreconstruction of properties such as pCO2 using the d13C of TOC is a goal fraught with uncertainty whether or not the marine sedimentary record considered is 'contaminated' with significant terrestrial input. Nonetheless, despite major and selective loss of both marine and terrestrial components as a consequence of postdepositional oxidation, intensive organic geochemical proxies such as the alkenone unsaturation index, UK'37, appear resistant to change and thereby retain their paleoceanographic promise.
Resumo:
In order to investigate the diversity of diet composition in macrobenthic peracarid crustaceans from the Antarctic shelf and deep sea, the fatty acid (FA) composition of different species belonging to the orders Isopoda, Amphipoda, Cumacea and Tanaidacea was analysed. Multivariate analyses of the FA composition confirmed general differences between the orders, but also distinct differences within these orders. To gain information on the origin of the FAs found, the potential food sources sediment, POM and foraminiferans were included in the study. Most of the analysed amphipod species displayed high 18:1(n-9)-18:1(n-7) ratios, widely used as an indicator for a carnivorous component in the diet. Cumaceans were characterised by increased phytoplankton FA markers such as 20:5(n-3) (up to 29% of total FAs), suggesting a diet based on phytodetritus. High values of the FA 20:4(n-6) were found in some munnopsid isopods (up to 21% of total FAs) and some tanaidacean species (up to 19% of total FAs). 20:4(n-6) also occurred in high proportions in some foraminiferan samples (up to 21% of total fatty acids), but not in sediment and POM, possibly indicating the ingestion of foraminiferans by some peracarid crustaceans.