182 resultados para Grain Refining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

yResults of 13 field investigations between 1966 and 1990 of the southwestern to eastern margin of Kötlujökull and its proglacial area are summarized with respect to sandar and their formation. Generally, the results are based on sedimentological examinations in the field and laboratory, on analyses of aerial photographs, and investigations of the glacier slope. The methods permitted a more detailed reconstruction of sandar evolution in the proglacial area of Kötlujökull since 1945, of tendencies in development and of single data going back until the last decades of the 19th century. Accordingly, there existed special periods of "flachsander"-formations with raised coarsegrained "sanderwurzels" resultant from the outbreak of subglacial meltwater tunneloutlets and other periods with "hochsander-"formations by supraglacial drainage. At present the belts of hochsanders in front of the glacier come up to more than 4 m in thickness and 1000 m in width, therefore containing perhaps more sediment direct in front of Kötlujökull than the old belts of flachsanderwurzels. In one case the explosion-like subglacial meltwater outburst combined with the genesis of a sanderwurzel could be observed for a time and is thoroughly discussed. The event is referred to the outburst of a sub- to inglacial meltwater body being under extreme hydrostatic press ures which is combined with the genesis of a new subglacial tunneloutlet as a new flachsander. Often these outbursts led to the destruction of a morainic belt more than 1000 m in width. Presumably the whole event was finished in not more than a few days. In addition to a characteristic pear-shaped form and water-moved stones up to diameters of 1 m the wurzels possess a single "main-channel" with rectangular cross-sections as far as 4 m deep and 50 m wide just as small flat channels resembling fish bones in connection with the main channel. Presumably, they have been active only in the last stage of wurzel formation. With regard to the subglacial tunnel gates long-living L-meltwater outlets are distinguished from short-living K-meltwater outlets. These are always combined with a raised coarse-grained sanderwurzel, but its meltwater discharge is generally decreasing and ceases after some years, whereas the discharge of L-meltwater outlets continues unchanged for long times (except seasonal differences). The material of flachsanders is preponderantly composed of mugearitic and andesitic cobble extending at least for some kilometres from the glacier margin, whereas the hochsanders correspond to medium to coarse sands without clay and without alternations into the direction of flow. The hochsander fans are covered with small braidet channels. Their sedimentary structures are determined by the short time changing of supraglacial meltwater discharge and the upper flow regime combined with the development of antidunes, which rule the channel-flows during the main activity periods in summer. Unlike the subglacial drainage the supraglacial drainage led to only weak effects of erosion on the glacier foreland. So the hochsanders refilled depressions of morainic areas or grew up on older flachsanderwurzels. Whereas all large flachsanders developed in front of approximate stationary glacier margins, the evolution of coherent belts of hochsanders were combined with progressive glacier fronts. On the other hand, there was obviously no evolution at all of large sandar in front of back-melting margins of Kötlujökull. Based on examinations of the glacier surface and on analyses of aerial photographs the different types of sandar are referred to different structures of the glacier snout. Finally chances of surviving of sandar in the proglacial area of Kötlujökull are shortly discussed just as the possibility of an application of the Islandic research results on Pleistocene sandar in northern Germany.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we present grain-size distributions of the terrigenous fraction of two deep-sea sediment cores from the SE Atlantic (offshore Namibia) and from the SE Pacific (offshore northern Chile), which we 'unmix' into subpopulations and which are interpreted as coarse eolian dust, fine eolian dust, and fluvial mud. The downcore ratios of the proportions of eolian dust and fluvial mud subsequently represent paleocontinental aridity records of southwestern Africa and northern Chile for the last 120,000 yr. The two records show a relatively wet Last Glacial Maximum (LGM) compared to a relatively dry Holocene, but different orbital variability on longer time scales. Generally, the northern Chilean aridity record shows higher-frequency changes, which are closely related to precessional variation in solar insolation, compared to the southwestern African aridity record, which shows a remarkable resemblance to the global ice-volume record. We relate the changes in continental aridity in southwestern Africa and northern Chile to changes in the latitudinal position of the moisture-bearing Southern Westerlies, potentially driven by the sea-ice extent around Antarctica and overprinted by tropical forcing in the equatorial Pacific Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling was undertaken at five sites (739-743) on ODP Leg 119 on a transect across the continental shelf of Prydz Bay, East Antarctica, to elucidate the long-term glacial history of the area and to examine the importance of the area with respect to the development of the East Antarctic ice sheet as a whole. In addition to providing a record of glaciation spanning 36 m.y. or more, Leg 119 has provided information concerning the development of a continental margin under the prolonged influence of a major ice sheet. This has allowed the development of a sedimentary model that may be applicable not only to other parts of the Antarctic continental margin, but also to northern high-latitude continental shelves. The cored glacial sedimentary record in Prydz Bay consists of three major sequences, dominated by diamictite: 1. An upper flat-lying sequence that ranges in thickness from a few meters in inner and western Prydz Bay to nearly 250 m in the outer or eastern parts of the bay. The uppermost few meters consist of Holocene diatom ooze and diatomaceous mud with a minor ice-rafted component overlying diamicton and diamictite of late Miocene to Quaternary age. The diamictite is mainly massive, but stratified varieties and minor mudstone and diatomite also occur. 2. An upper prograding sequence cored at Sites 739 and 743, unconformly below the flat-lying sequence. This consists of a relatively steep (4° inclination) prograding wedge with a number of discrete sedimentary packages. At Sites 739 and 743 the sequence is dominated by massive and stratified diamictite, some of which shows evidence of slumping and minor debris flowage. 3. A lower, more gently inclined, prograding sequence lies unconformably below the flat-lying sequence at Site 742 and the upper prograding sequence at Site 739. This extends to the base of both sites, to 316 and 487 mbsf, respectively. It is dominated by massive, relatively clast-poor diamictite which is kaolinite-rich, light in color, and contains sporadic carbonate-cemented layers. The lower part of Site 742 includes well-stratified diamictites and very poorly sorted mudstones. The base of this site has indications of large-scale soft-sediment deformation and probably represents proximity to the base of the glacial sequence. Facies analysis of the Prydz Bay glacial sequence indicates a range of depositional environments. Massive diamictite is interpreted largely as waterlain till, deposited close to the grounding line of a floating glacier margin, although basal till and debris flow facies are also present. Weakly stratified diamictite is interpreted as having formed close to or under the floating ice margin and influenced by the input of marine diatomaceous sediment (proximal glaciomarine setting). Well-stratified diamictite has a stronger marine input, being more diatom-rich, and probably represents a proximal-distal glaciomarine sediment with the glaciogenic component being supplied by icebergs. Other facies include a variety of mudstones and diatom-rich sediments of marine origin, in which an ice-rafted component is still significant. None of the recovered sediments are devoid of a glacial influence. The overall depositional setting of the prograding sequence is one in which the grounded ice margin is situated close to the shelf edge. Progradation was achieved primarily by deposition of waterlain till. The flat-lying sequence illustrates a complex sequence of advances and retreats across the outer part of the shelf, with intermittent phases of ice loading and erosion. The glacial chronology is based largely on diatom stratigraphy, which has limited resolution. It appears that ice reached the paleoshelf break by earliest Oligocene, suggesting full-scale development of the East Antarctic ice sheet by that time. The ice sheet probably dominated the continental margin for much of Oligocene to middle Miocene time. Retreat, but not total withdrawal of the ice sheet, took place in late Miocene to mid-Pliocene time. The late Pliocene to Pleistocene was characterized by further advances across, and progradation of, the continental shelf. Holocene time has been characterized by reduced glacial conditions and a limited influence of glacial processes on sedimentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy (magnetic & non-magnetic) minerals are found concentrated by natural processes in many fluvial, estuarine, coastal and shelf environments with a potential to form economic placer deposits. Understanding the processes of heavy mineral transport and enrichment is prerequisite to interpret sediment magnetic properties in terms of hydro- and sediment dynamics. In this study, we combine rock magnetic and sedimentological laboratory measurements with numerical 3D discrete element models to investigate differential grain entrainment and transport rates of magnetic minerals in a range of coastal environments (riverbed, mouth, estuary, beach and near-shore). We analyzed grain-size distributions of representative bulk samples and their magnetic mineral fractions to relate grain-size modes to respective transport modes (traction, saltation, suspension). Rock magnetic measurements showed that distribution shapes, population sizes and grain-size offsets of bulk and magnetic mineral fractions hold information on the transport conditions and enrichment process in each depositional environment. A downstream decrease in magnetite grain size and an increase in magnetite concentration was observed from riverine source to marine sink environments. Lower flow velocities permit differential settling of light and heavy mineral grains creating heavy mineral enriched zones in estuary settings, while lighter minerals are washed out further into the sea. Numerical model results showed that higher heavy mineral concentrations in the bed increased the erosion rate and enhancing heavy mineral enrichment. In beach environments where sediments contained light and heavy mineral grains of equivalent grain sizes, the bed was found to be more stable with negligible amount of erosion compared to other bed compositions. Heavy mineral transport rates calculated for four different bed compositions showed that increasing heavy mineral content in the bed decreased the transport rate. There is always a lag in transport between light and heavy minerals which increases with higher heavy mineral concentration in all tested bed compositions. The results of laboratory experiments were validated by numerical models and showed good agreement. We demonstrate that the presented approach bears the potential to investigate heavy mineral enrichment processes in a wide range of sedimentary settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

50 m of Middle Eocene pure radiolarian ooze were drilled at ODP Site 660 in the equatorial East Atlantic, 80 km northeast of the Kane Gap. The oozes comprise a 10 m high and 2 km broad mound of seismic reverberations, covered by manganese-rich sediment, and contain trace amounts of sponge spicules and diatoms, negligible organic carbon (0.15%), clay, and variable amounts of pyrite. The yellow to pale brown silty sediments are relatively coarse-grained (30-45% coarser than 6 µm), little bioturbated, and commonly massive or laminated on a cm-scale. The unlithified radiolarian ooze may indicate an interval of high oceanic productivity, probably linked to a palaeoposition of Site 660 close to the equatorial upwelling belt during Middle Eocene time. The absence of organic matter, however, and both the laminated bedding and the mound-like structure of the deposit on the lower slope of a continental rise indicate deposition by relatively intense contour currents of oxygen-rich deep water, which passed through the Kane Gap, winnowed the fine clay fraction, and prevented the preservation of organic carbon. The ooze may be either a contourite-lag deposit, or a contourite accumulation of displaced radiolarians, originating south of the Kane Gap and being deposited in its northern lee, thus documenting the passage of a strong cross-equatorial bottom-water current formed near Antarctica. These Eocene contourites may be an analogue for ancient radiolarites in the Tethyan Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-seven samples from the Leg 83 section of Hole 504B have been investigated using magnetic, optical, and electron optical methods. The primary magnetic mineral to crystallize was titanomagnetite of approximate composition Fe2.4Ti0.6O4 (TM60), but none survives, nor is there evidence of titanomaghemite produced by oxidation of TM60. The average measured magnetic properties can be interpreted in terms of magnetite, Fe3O4, having average grain size of <1 µm and present in average volume concentration of - 0.5%. The intensity of the natural remanent magnetization (NRM) of the rocks could also be accounted for as being a thermoremanence carried by this mineral. Although the heterogeneity of the titanomagnetite grains could be detected optically, the texture of the intergrown phases is poorly developed. In some samples from the massive units of the lower part of the section, trellis patterns were visible. The Fe3O4 present in the intergrowths is too intimately mixed with the other intergrown phases to be revealed by electron microprobe analysis that simply returns the bulk composition of the intergrowth (oxidized TM60). The path by which the mineral assemblage evolved from TM60 to an Fe304-containing intergrowth, under the temperature and pressure conditions obtaining in the Leg 83 section, makes interesting speculation. Deuteric oxidation, maghemitization/inversion, or some hypothetical low-temperature/high-pressure oxidation by a leaching-of-iron process may all play roles.