327 resultados para Gibraltar Strait
Resumo:
Potential temperature measured with a SBE37 at 35.862ºN, 5.97ºW at 344 meters Depth. Data expand from September the 30th, 2004 to March the 2nd, 2016. Original measurement frequency was 30 minutes, the data presented here is a subsampling that extract the coldest temperature found each 12 hours. The time vector corresponds with the moment in which this minimun temperature is observed.
Resumo:
The present study addresses the hypothesis that the Western Alborán Gyre in the Alborán Sea (the westernmost Mediterranean basin adjacent to the Strait of Gibraltar) influences the composition of the outflow through the Strait of Gibraltar. The process invoked is that strong and well-developed gyres help to evacuate the Western Mediterranean Deep Water from the Alboran basin, thus increasing its presence in the outflow, whereas weak gyres facilitates the outflow of Levantine and other Intermediate waters. To this aim, in situ observations collected at Camarinal (the main) and Espartel (the westernmost) sills of the Strait have been analyzed along with altimetry data, which were employed to obtain a representative proxy of the strength of the gyre. An encouraging correlation of the expected sign was observed between the time series of potential temperature at Espartel sill, which is show to keep information on the outflow composition, and the proxy of the Western Alborán Gyre, which strongly suggests the correctness of the hypothesis, although the weakness of the involved signals does not allow for drawing definitive conclusions.
Resumo:
A suit of sediment cores close to and south of the Strait of Gibraltar (12°-36°N, 500-2800 m water depth) were analyzed for stable isotopes in epibenthic foraminifers Cibicidoides wuellerstorfi and Planulina ariminensis. During peak glacial times, the data exhibit higher delta13C values of up to 1.6 per mil at intermediate depths near the Strait of Gibraltar (36°N). The values decrease to the south as evidenced by our data, but also to the north as revealed by data of intermediate depth cores north of 38°N (in Duplessy et al. (1987)). Thus, the distribution pattern of delta13C provides crucial evidence for an increased influence of nutrient depleted Mediterranean Outflow Water (MOW) on the glacial northeast Atlantic hydrography. During oxygen isotope Terminations I and II, the meridional carbon isotope gradient indicates a significantly decreased but still active MOW. As deduced from the delta18O fluctuations, the temperatures of the MOW in the Atlantic were lower during glacial times by as much as 5°C. During glacial times and during Termination I the maximum delta13C values of the MOW correlate with minimum values of the North Atlantic Deep Water (NADW) and vice versa. This inverse response to climatic change of the carbon isotope signals of both water masses indicates, that the supply of saline MOW to the north Atlantic may be less important for the formation of NADW than previously assumed.