360 resultados para Geology--East (U.S.)--Maps


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal patterns in the partitioning of phytoplankton carbon during receding sea ice conditions in the eastern Bering Sea water column are presented using rates of 14C net primary productivity (NPP), phototrophic plankton carbon content, and POC export fluxes from shelf and slope waters in the spring (March 30-May 6) and summer (July 3-30) of 2008. At ice-covered and marginal ice zone (MIZ) stations on the inner and middle shelf in spring, NPP averaged 76 ± 93 mmol C/m**2/d, and in ice-free waters on the outer shelf NPP averaged 102 ± 137 mmol C/m**2/d. In summer, rates of NPP were more uniform across the entire shelf and averaged 43 ± 23 mmol C/m**2/d over the entire shelf. A concomitant shift was observed in the phototrophic pico-, nano-, and microplankton community in the chlorophyll maximum, from a diatom dominated system (80 ± 12% autotrophic C) in ice covered and MIZ waters in spring, to a microflagellate dominated system (71 ± 31% autotrophic C) in summer. Sediment trap POC fluxes near the 1% PAR depth in ice-free slope waters increased by 70% from spring to summer, from 10 ± 7 mmol C/m**2/d to 17 ± 5 mmol C/m**2/d, respectively. Over the shelf, under-ice trap fluxes at 20 m were higher, averaging 43 ± 17 mmol C/m**2/d POC export over the shelf and slope estimated from 234Th deficits averaged 11 ± 5 mmol C/m**2/d in spring and 10 ± 2 mmol C/m**2/d in summer. Average e-ratios calculated on a station-by-station basis decreased by ~ 30% from spring to summer, from 0.46 ± 0.48 in ice-covered and MIZ waters, to 0.33 ± 0.26 in summer, though the high uncertainty prevents a statistical differentiation of these data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two planktonic foraminiferal oxygen isotope records of ODP Hole 653A (Tyrrhenian Sea) are presented for the time period extending from approximately 0.8 to 3.0 Ma. Six, generally accepted, synchronous bioevents were used to precise the oxygen isotope chronology and to identify the oxygen isotope stages 22 down to 114. Subsequently, this oxygen isotope chronology was used to determine the synchronism or diachronism of various other biostratigraphic events with those recorded in the Singa and Ficarazzi land sections (Italy) and those in other DSDP/ODP sites. New results concern the diachronity of the FOD of the planktonic foraminiferal species N. atlantica, G.truncatulinoides truncatulinoides and G. inflata between ODP Hole 653A and the Italian landsections. Because many species entered the Mediterranean in short term fluxes, strongly related to the southward migration of cool North Atlantic surface waters, their time distribution through the Pliocene-Pleistocene generally corresponds to alternated intervals of presence and absence. This should explain most of the apparently diachronous appearances and disappearances. Alternating presence-absence patterns are of less importance for the various nannofossil events. The LOD of D. surculus occurs during the transition of stage 100 to 101 in both ODP Hole 653A and the Singa section, which is in perfect agreement with the disappearance of this species from the open ocean. The LOD of D. pentaradiatus in the Mediterranean occurs in stages 100-99, which seems to be consistent with the extinction of this species in the southern Hemisphere. G. oceanica, which corresponds to the 4 µm < Gephyrocapsa spp <5.5 µm is recorded in stages 65 to 64 at ODP Hole 653A. The Gephyrocapsa spp. >5.5 µm first occurred in stage 51 at Hole 653A, which fits within the uncertainty interval for this event stretching from stage 51 to 47 in the open ocean and seems therefore a useful tool for conventional biostratigraphy in the Mediterranean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Byrd Glacier discontinuity us a major boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consits of two-dimensional transects across the belt, but do not adress the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic producede a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of the terrane (Beardmore microcontinent) during the latest Neroproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in the support of this hypothesis are U-Pb dates of 545.7 ± 6.8 Ma and 531.0 ± 7.5 Ma on plutonic rocks from the Britannia Range, subduction stepped out, and Byrd Glacier. After docking of the terrane, subduction stepped out, and Byrd Group was deposited during the Atdabanian-Botomian across the inner margin of the terrane. Beginning in the upper Botomian, reactivation of the sutured boundaries of the terrane resulted in an outpouring of clastic sediment and folding and faulting of the Byrd Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared the suitability of two skeletal materials of the Atlantic brain coral Diploria strigosa for 230Th/U-dating: the commonly used bulk material comprising all skeletal elements and the denser theca wall material. Eight fossil corals of presumably Last Interglacial age from Bonaire, southern Caribbean Sea, were investigated, and several sub-samples were dated from each coral. For four corals, both the ages and the activity ratios of the bulk material and theca wall agree within uncertainty. Three corals show significantly older ages for their bulk material than for their theca wall material as well as substantially elevated 232Th content and (230Th/238U) ratios. The bulk material samples of another coral show younger ages and lower (230Th/238U) ratios than the corresponding theca wall samples. This coral also contains a considerable amount of 232Th. The application of the available open-system models developed to account for post-depositional diagenetic effects in corals shows that none of the models can successfully be applied to the Bonaire corals. The most likely explanation for this observation is that the assumptions of the models are not fulfilled by our data set. Comparison of the theca wall and bulk material data enables us to obtain information about the open-system processes that affected the corals. The corals showing apparently older ages for their bulk material were probably affected by contamination with a secondary (detrital) phase. The most likely source of the detrital material is carbonate sand. The higher (230Th/232Th) ratio of this material implies that detrital contamination would have a much stronger impact on the ages than a contaminant with a bulk Earth (230Th/232Th) ratio and that the threshold for the commonly applied 232Th reliability criterion would be much lower than the generally used value of 1 ng g^-1. The coral showing apparently younger ages for its bulk material was probably influenced by more than one diagenetic process. A potential scenario is a combination of detrital contamination and U addition by secondary pore infillings. Our results show that the dense theca wall material of D. strigosa is generally less affected by post-depositional open-system behaviour and better suited for 230Th/U-dating than the bulk material. This is also obvious from the fact that all ages of theca wall material reflect a Last Interglacial origin (~125 ka), whereas the bulk material samples are either substantially older or younger. However, for some corals, the 230Th/U-ages and activity ratios of the bulk material and the theca wall samples are similar. This shows that strictly reliable 230Th/U-ages can also be obtained from bulk material samples of exceptionally well-preserved corals. However, the bulk material samples more frequently show elevated activity ratios and ages than the corresponding theca wall samples. Our findings should be generally applicable to brain corals (Mussidae) that are found in tropical oceans worldwide and may enable reliable 230Th/U-dating of fossil corals with similar skeletal architecture, even if their bulk skeleton is altered by diagenesis. The 230Th/U-ages we consider reliable (120-130 ka), along with a recently published age of 118 ka, provide the first comprehensive dating of the elevated lower reef terrace at Bonaire (118-130 ka), which is in agreement in timing and duration with other Last Interglacial records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg/L (mean: 9.6 mg/L). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km**3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies - including metabasites - lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet-olivine assemblages (i.e. >=18-20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P-T path and peak conditions of 800-850 °C and 23-25 kbar. These conditions correspond to ~70 km depth of burial and a metamorphic gradient of 11-12 °C/km that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet-whole-rock Sm-Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Prince Charles Mountains have been subject to extensive geological and geophysical investigations by former Soviet, Russian and Australian scientists from the early 1970s. In this paper we summarise, and review available geological and isotopic data, and report results of new isotopic studies (Sm-Nd, Pb-Pb, and U-Pb SHRIMP analyses); field geological data obtained during the PCMEGA 2002/2003 are utilised. The structure of the region is described in terms of four tectonic terranes. Those include Archaean Ruker, Palaeoproterozoic Lambert, Mesoproterozoic Fisher, and Meso- to Neoproterozoic Beaver Terranes. Pan-African activities (granite emplacement and probably tectonics) in the Lambert Terrane are reported. We present a summary of the composition of these terranes, discuss their origin and relationships. We also outline the most striking geological features, and problems, and try to draw attention to those rocks and regional geological features which are important in understanding the composition and evolution of the PCM and might suggest targets for further investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uranium (U) concentrations and activity ratios (d234U) of authigenic carbonates are sensitive recorders of different fluid compositions at submarine seeps of hydrocarbon-rich fluids ("cold seeps") at Hydrate Ridge, off the coast of Oregon, USA. The low U concentrations (mean: 1.3 ± 0.4 µg/g) and high 234U values (165-317 per mil) of gas hydrate carbonates reflect the influence of sedimentary pore water indicating that these carbonates were formed under reducing conditions below or at the seafloor. Their 230Th/234U ages span a time interval from 0.8 to 6.4 ka and cluster around 1.2 and 4.7 ka. In contrast, chemoherm carbonates precipitate from marine bottom water marked by relatively high U concentrations (mean: 5.2 ± 0.8 µg/g) and a mean d234U ratio of 166 ± 3 per mil. Their U isotopes reflect the d234U ratios of the bottom water being enriched in 234U relative to normal seawater. Simple mass balance calculations based on U concentrations and their corresponding d234U ratios reveal a contribution of about 11% of sedimentary pore water to the bottom water. From the U pore water flux and the reconstructed U pore water concentration a mean flow rate of about 147 ± 68 cm/a can be estimated. 230Th/234U ages of chemoherm carbonates range from 7.3 to 267.6 ka. 230Th/234U ages of two chemoherms (Alvin and SE-Knoll chemoherm) correspond to time intervals of low sealevel stands in marine isotope stages (MIS) 2, 4, 5, 6, 7 and 8. This observation indicates that fluid flow at cold seep sites sensitively reflects pressure changes of the hydraulic head in the sediments. The d18OPDB ratios of the chemoherm carbonates support the hypothesis of precipitation during glacial times. Deviations of the chemoherm d18O values from the marine d18O record can be interpreted as to reflect temporally and spatially varying bottom water and/or vent fluid temperatures during carbonate precipitation between 2.6 and 8.6°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and d7Li values. The sediment piles in front of the Mariana and South Sandwich arcs largely consist of pelagic sediments (clays and oozes). The pelagic clays have high Li contents (up to 57.3 ppm) and Li isotope compositions ranging from +1.3? to +4.1?. The oozes have lower Li contents (7.3-16 ppm) with d7Li values of the diatom oozes from the South Sandwich lower (+2.8? to +3.2?) than those of the radiolarian oozes from the Mariana arc (+8.1? to +14.5?). Mariana sediment also contains a significant portion of volcanogenic material, which is characterised by a moderate Li content (14 ppm) and a relatively heavy isotope composition (+6.4?). Sediments from the Banda and Lesser Antilles contain considerable amounts of continental detritus, and have high Li contents (up to 74.3 ppm) and low d7Li values (around 0?), caused by weathering of continental bedrock. East Sunda sediments largely consist of calcareous oozes. These carbonate sediments display intermediate to high Li contents (2.4-41.9 ppm) and highly variable d7Li values (-1.6? to +12.8?). Basaltic oceanic crust samples from worldwide DSDP and ODP drill cores are characterised by enrichment of Li compared to fresh MORB (6.6-33.1 vs. 3.6-7.5 ppm, respectively), and show a large range in Li isotope compositions (+1.7? to +11.8?). The elemental and isotopic enrichment of Li in altered basalts is due to the uptake of isotopically heavy seawater Li during weathering. However, old oceanic crust samples from Sites 417/418 exhibit lighter Li isotope compositions compared to young basaltic crust samples from Sites 332B and 504B. This lighter Li isotope signature in old crust is unexpected and further research is needed to explore this issue.