42 resultados para Gataker, Charles, 1614 or 15-1680.
Resumo:
In 2001, a weather and climate monitoring network was established along the temperature and aridity gradient between the sub-humid Moroccan High Atlas Mountains and the former end lake of the Middle Drâa in a pre-Saharan environment. The highest Automated Weather Stations (AWS) was installed just below the M'Goun summit at 3850 m, the lowest station Lac Iriki was at 450 m. This network of 13 AWS stations was funded and maintained by the German IMPETUS (BMBF Grant 01LW06001A, North Rhine-Westphalia Grant 313-21200200) project and since 2011 five stations were further maintained by the GERMAN DFG Fennec project (FI 786/3-1), this way some stations of the AWS network provided data for almost 12 years from 2001-2012. Standard meteorological variables such as temperature, humidity, and wind were measured at an altitude of 2 m above ground. Other meteorological variables comprise precipitation, station pressure, solar irradiance, soil temperature at different depths and for high mountain station snow water equivalent. The stations produced data summaries for 5-minute-precipitation-data, 10- or 15-minute-data and a daily summary of all other variables. This network is a unique resource of multi-year weather data in the remote semi-arid to arid mountain region of the Saharan flank of the Atlas Mountains. The network is described in Schulz et al. (2010) and its further continuation until 2012 is briefly discussed in Redl et al. (2015, doi:10.1175/MWR-D-15-0223.1) and Redl et al. (2016, doi:10.1002/2015JD024443).
Resumo:
Among the Siberian shelf seas the Kara Sea is most strongly influenced by riverine runoff with nearly 1500 km fresh water discharge per year. This fresh water, discharged mainly by Ob and Yenisei, contains about 3.1 * 106 and 4.6 * 106 tons of total organic carbon per year, respectively (Gordeev et al. 1996). Little is known about the relevance of this organic material for biological communities, neither for the Kara Sea nor for the adjacent deep basins of the central Arctic Ocean. Aiming at elucidating the fate of fluvial matter transported from the rivers via estuaries into the central Arctic Ocean and the relative importance of marine organic matter being produced such information is crucial. Here we present calculations on the organic carbon demand of the Kara Sea macrozoobenthos based on measured biomass (total wet weight [ww] per 0.25 m ) from quantitative box corer samples and empirical relationships between biomass, annual production, annual respiration, and carbon remineralisation. This bottom-up approach may serve as a first estimate of the carbon remineralization potential of a given zoobenthos community (or area) as long as no data on in situ respiration rates are available. Our data basis comprises 54 stations sampled in summer seasons 1997, 1999 and 2000 in the Kara Sea at water depths between 10 and 68 m. The geographical area represented by stations analysed covers roughly 178 000 km**2, which is about one fifth of the total Kara Sea area. In this area, 290 species of invertebrate macrozoobenthos were identified with polychaeta, Crustacea, mollusca and echinodermata being the most abundant. For all stations analysed, mean biomass values ranged between 4.3 and 778.1 g ww/m**2 with organic carbon demands between 3.5 and 43.2 mg C/m**2/d. For the area of 178 000 km2 a preliminary total consumption of 1.4 * 10**6t Corg/y (equivalent to 21.5 mg C/m**2/d) was calculated for the macrozoobenthos. An extrapolation of our data would lead to an annual carbon demand of about 5-7 * 106 t for the whole Kara Sea macrozoobenthos (or 15.5-21.7 mg C/m2/d).
Resumo:
A high-resolution 222Radon (222Rn) flux map for Europe was developed, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° x 0.083°. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222Rn flux from soils in Europe is estimated to be 10 mBq/m**2/s (ERA-Interim/Land soil moisture) or 15 mBq/m**2/s (GLDAS-Noah soil moisture) for the period 2006-2010. The 222Rn flux maps for Europe are available for the application in atmospheric transport studies, e.g to evaluate the performance of atmospheric transport models.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.