37 resultados para Gall (Franz Joseph), edition, 1845
Resumo:
Clay-mineral distributions in the Arctic Ocean and the adjacent Eurasian shelf areas are discussed to identify source areas and transport pathways of terrigenous material in the Arctic Ocean. The main clay minerals in Eurasian Arctic Ocean sediments are illite and chlorite. Smectite and kaolinite occur in minor amounts in these sediments, but show strong variations in the shelf areas. These two minerals are therefore reliable in reconstructions of source areas of sediments from the Eurasian Arctic. The Kara Sea and the western part of the Laptev Sea are enriched in smectite, with highest values of up to 70% in the deltas of the Ob and Yenisey rivers. Illite is the dominant clay mineral in all the investigated sediments except for parts of the Kara Sea. The highest concentrations with more than 70% illite occur in the East Siberian Sea and around Svalbard. Chlorite represents the clay mineral with lowest concentration changes in the Eastern Arctic, ranging between 10 and 25%. The main source areas for kaolinite in the Eurasian Arctic are Mesozoic sedimentary rocks on Franz-Josef Land islands. Based on clay-mineral data, transport of the clay fraction via sea ice is of minor importance for the modern sedimentary budget in the Arctic basins.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which can be derived from anthropogenic sources, such as combustion and discharges from extraction and transport, and natural processes, including leakage and erosion of fossil carbon. Natural PAH sources contribute, along with biological activities and terrestrial run-off, to the organic carbon content in sediments.The Barents Sea region is far from many anthropogenic sources of PAH, but production and trans-shipment of hydrocarbons is increasing. We present data for polycyclic aromatic hydrocarbon (PAH) concentrations in bottom sediments from 510 stations in the Barents and White Seas, and along the northern coast of Norway.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.