715 resultados para Fishes -- Adaptation -- Mediterranean Sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water column stratification increased at climatic transitions from cold to warm periods during the late Quaternary and led to anoxic conditions and sapropel formation in the deep eastern Mediterranean basins. High-resolution data sets on sea-surface temperatures (SST) (estimated from UK'37 indices) and d18O of planktonic foraminifer calcite (d18Ofc) across late Pleistocene sapropel intervals show that d18Ofc decreased (between 1 and 4.6 per mil) and SST increased (between 0.7° and 6.7°C). Maximal d18Oseawater depletion of eastern Mediterranean surface waters at the transition is between 0.5 and 3.0 per mil, and in all but one case exceeded the depletion seen in a western Mediterranean core. The depletion in d18Oseawater is most pronounced at sapropel bases, in agreement with an initial sudden input of monsoon-derived freshwater. Most sapropels coincide with warming trends of SST. The density decrease by initial freshwater input and continued warming of the sea surface pooled fresh water in the surface layer and prohibited deep convection down to ageing deep water emplaced during cold and arid glacial conditions. An exception to this pattern is "glacial" sapropel S6; its largest d18Oseawater depletion (3 per mil) is almost matched by the depletion in the western Mediterranean Sea, and it is accompanied by surface water cooling following an initially rapid warming phase. A second period of significant isotopic depletion is in isotope stage 6 at the 150 kyr insolation maximum. While not expressed as a sapropel due to cold SST, it is in accord with a strengthened monsoon in the southern catchment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first data on content of inorganic reduced sulfur compounds [H2S, S°, S2O3(2-), SO3(2-)] were obtained at two stations in the northeastern Levant Sea (Mediterranean Basin). With lower detection limit for the mentioned sulfur forms of 30 nM, sulfide forms were not found, while thiosulfate concentration varied from 178 to 890 nM (from 24 to 78 % of total reduced S), and S° varied from 156 to 1090 nM. Vertical distribution of these compounds showed irregular character; correlation between total reduced S maxima, fluorescence, and increase of nutrient element content near the lower pycnocline boundary was observed. The maximum total sulfur concentration in the surface layer was likely due an anthropogenic influence. The ''starting'' mechanism that controls appearance and distribution of sulfur compounds in oxygen-containing water is the process of bacterial sulfate reduction in micropatches of fresh organic detritus. Reduced sulfur forms participate further in a series of chemical and biochemical processes. Contribution of hydrolysis of organic sulfur-containing compounds is insignificant for the region in study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration and isotopic composition of Nd in water and particles collected in the western Mediterranean Sea are studied by two complementary approaches. The first examines local vertical profiles and time series; the second considers the global Nd budget of the whole western Mediterranean Sea. These two approaches are used to quantify the Nd inputs and the dissolved/particulate exchange processes in the water column. Two profiles of Nd in seawater in the Ligurian Sea taken in May and October 1992 show an average epsilon-Nd(0) = -9.6 ± 0.5. Seawater from the Strait of Sicily, representative of the eastern waters flowing into the western basin, is more radiogenic [epsilon-Nd(0) = -7.7 ± 0.6]. Profiles of particulate matter collected in sediment traps in coastal (Gulf of Lions) and offshore (Ligurian Sea) environments are also shown. Particles are enriched in Nd and are more radiogenic near the coast than offshore. Measurements of Nd concentration and epsilon-Nd(0) of external sources to the western Mediterranean Sea compared with the literature data demonstrate that particulate flux of atmospheric Saharan origin are more rich ([Nd] = 38 ± 10 µg/g) and less radiogenic [epsilon-Nd(0) = -13.0 ± 1.0] than riverine particulate discharge ([Nd] = 21.5 ± 4.4 µg/g; epsilon-Nd(0) = -10.1 ± 0.5), allowing to trace Nd particulate inputs in the water column. Nd atmospheric flux appears to be the major source into the whole western basin, although lateral advection of riverine material is the prevailing process in the coastal environment. Offshore, the vertical propagation of an important Saharan dust event has been recorded for two months in sediment traps at 80, 200 and 1000 m. The evolution of the resulting negative epsilon-Nd(0) peak along depth and time shows that the particles reach 200 m on a time scale of one week. For the first time, the Nd budget in the western Mediterranean basin is constrained by both concentrations and isotopic compositions measured in particles and seawater. Surface budget requires a remobilization of 30 ± 20% of particulate Nd input. In deep water, dissolved Nd concentrations are balanced by a scavenging of 10 ± 20% of the sinking particulate flux. On the other hand, the deep isotopic compositions suggest an exchange between 30 ± 20% of the sinking particles and the deep waters. The hypothesis of a non-stationary regime for the surface waters in the Ligurian Sea is also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C37 alkenone fluxes were measured with sediment traps at 200 m depth over the years 1989/1990 and 1993/1994 to assess the interannual variability of the alkenone flux from the surface waters of the Mediterranean Sea. Fall and spring were identified as the high flux periods. SST estimates derived from the UK'37 index indicated 50 m and 30 m as major production depths in spring and fall, respectively. Althought interannual variation of alkenone fluxes was notable, the seasonality and depth of production appeared to be recurrent features of the coccolithophorid cycle of production. Alkenone fluxes at 1000 m measured over the year 1993/1994 were about 5 times lower than at 200 m and show no evidence of preferential preservation relative to the organic carbon between these depths. SST predicted at 200 m and 1000 m indicated a remarkably good transfer of the surface temperature signal to deeper layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of a lithological study of bottom sediments in the Syrian region of the Mediterranean Sea during Cruise 27 of R/V Vityaz (1993) are reported. Suspended sediment discharge of the Nile River are of the greatest importance for terrigenous sedimentation in the SE part of the Mediterranean Sea, especially in deep-sea areas. Suspended load entering from the Syrian catchment area plays an important role in formation of recent shelf and slope deposits. Supply of aerosols from Syrian and Arabian deserts was distinguished by the patchiness of surface distribution of quartz. During Late Quaternary accumulation of terrigenous material supplied from both the Syrian and the Nile drainage areas was irregular. Sedimentation was remarkably enhanced during sapropel formation 7000-9000 years BP.