44 resultados para First and second-time time parents
Resumo:
Within the monitoring programme of the Helsinki Commission (HELCOM) the mesozooplankton of the Bornholm Basin (ICES subdivision 25, station BMP-K2) was sampled by the WP-2 net (lOOfJm) 5-8 times a year in 1988-1992. Abundance, biomass, secondary production and productivity (P/B) were given for mesozooplankton groups and copepod species. Environmental factors recorded were temperature, chlorophyll a and primary production. Within copepods, the dominant species were Temora longicornis and Pseudocalanus minutus with yearly peak values of 40-50% of the monthly copepod numbers and biomasses. The annual production of Temora longicornis was highest (6.5g C/m**2/y). The biomass of all copepods was at its maximum in June (mean = 2.25g C/m**2), especially in 1992 (3.65g C/m**2). The differences between results from two methods used to calculate the production of copepods were greatest in June and July. The cladocerans were only important in summer and the appendicularians only in spring. The productivity (P/B) of the appendicularians was highest of all mesozooplankton groups. Numbers and the biomass of the meroplankton were one or two orders of magnitude below the holoplanktic groups.
Resumo:
Fine-grained clay subfractions (SFs) with particle size of <0.1, 0.1-0.2, 0.2-0.3, 0.3-0.6, 0.6-2.0, and 2-5 µm separated from claystone of Upper Precambrian Pumanskaya and Poropelonskaya formations on the Srednii Peninsula were studied by transmission electron microscopy, X-ray diffraction, and Rb-Sr methods. All subfractions consist of low-temperature illite and chlorite, and contribution of chlorite decreases with diminishing particle size. The crystallinity index and I002/I001 ratio increase from coarse- to fine-grained SFs. Leaching by ammonium acetate solution and Rb-Sr systematics in combination with mineralogical and morphological data indicate that illite in Upper Proterozoic claystone from the Srednii Peninsula formed during three time intervals: 810-830, 610-620, and about 570 Ma ago. The first generation of this mineral with low Rb/Sr ratio dominates in coarse-grained SFs while the second and third generations with a high Rb/Sr ratio prevail in fine-grained SFs. All of three generations are known in Poropelon claystone, whereas Puman claystone contains only illite of the first and second generations. Geological processes responsible for multistage illite evolution in claystones are discussed.
Resumo:
In the Salgesch forest in the Canton of Valais in Switzerland, the understory has been removed to test whether effects on pine tree vitality. The data set published here compromises 120 time series of 60 soil temperature and 60 volumetric water content (VWC) sensors (EC-TM and 5-TM) (Decagon Devices, WA, USA) at three soil depth levels (5, 30, 60 cm) employed in the direct vicinity of six control trees and six trees with the undergrowth removed. At the levels 5 and 60 cm, three replications were made whereas 4 replications were made at level 30 cm. Six loggers recorded hourly data since 2010 with 18% gaps or 11% when not considering winter months December, January and February. The figure attached to this repository shows the average VWC and temperature of all measurements within the same depth and treatment specific setting aggregated in a defined time interval and period. In addition to that, the standard deviations are plotted as transparent polygons. In case of insufficient values for calculating standard deviations, the setting specific mean standard deviation of the considered time period are inserted.
Resumo:
The concept of homogenous response units (HRU) was designed as a general concept for the delineation of basic spatial units. Only those characteristics of landscape, which are relatively stable over time (even under climate change) and largely unsusceptible to anthropogenic influence, were selected. The HRU can be seen as a basic spatial framework for the implementation of climate change and land management alternative scenarios into global modeling and therefore is a basic input for delineation of landscape units. HRUs are defined based on classifications of altitude (five classes: 1 (0 - 300m), 2 (300 - 600m), 3 (600 - 1100m), 4 (1100 - 2500m), 5 (> 2500m)), slope (seven classes(degrees): 1 (0 - 3), 2 (3 - 6), 3 (6 - 10), 4 (10 - 15), 5 (15 - 30), 6 (30 - 50), 7 (> 50)) and soil composition (five classes: 1 (sandy), 2 (loamy), 3 (clay), 4 (stony), 5 (peat)). e.g. HRU111 refers to Altitude class 1: 0-300m; Slope class 1: 0-3 degrees; and Soil class 1: sandy. Areas of non-soil are assigned 88. HRUs have a spatial resolution of approximately 10 km**2.
Resumo:
Ocean Drilling Program Legs 127 and 128 in the Japan Sea have revealed the existence of numerous dark-light rhythms of remarkable consistency in sediments of late Miocene, latest Pliocene, and especially Pleistocene age. Light-colored units within these rhythms are massive or bioturbated, consist of diatomaceous clays, silty clays, or nannofossil-rich clays, and are generally poor in organic matter. Dark-colored units are homogeneous, laminated, or thinly bedded and include substantial amounts of biogenic material such as well-preserved diatoms, planktonic foraminifers, calcareous nannofossils, and organic matter (maximum 7.4 wt%). The dark-light rhythms show a similar geometrical pattern on three different scales: First-order rhythms consist of a cluster dominated by dark-colored units followed by a cluster dominated by light-colored units (3-5 m). Spectral analysis of a gray-value time series suggests that the frequencies of the first-order rhythms in sediments of latest Pliocene and Pleistocene age correlate to the obliquity and the eccentricity cycles. The second-order dark-light rhythms include a light and a dark-colored unit (10-160 cm). They were formed in time spans of several hundred to several ten thousand years, with variance centering around 10,500 yr. This frequency may correspond to half the precessional cycle. Third-order rhythms appear as laminated or thinly bedded dark-light couplets (2-15 mm) within the dark-colored units of the second-order rhythms and may represent annual frequencies. In interpreting the rhythms, we have to take into account that (1) the occurrence of the first- and second-order rhythms is not necessarily restricted to glacial or interglacial periods as is shown by preliminary stable-isotope analysis and comparison with the published d18O record; (2) they appear to be Milankovitch-controlled; and (3) a significant number of the rhythms are sharply bounded. The origin of the dark-light rhythms is probably related to variations in monsoonal activity in the Japan Sea, which show annual frequencies, but also operates in phase with the orbital cycles.
Resumo:
A high-resolution calcareous nannofossil analysis of the Danian/Selandian boundary was conducted at Site 1262 (Walvis Ridge, South Atlantic) to pinpoint the lowest occurrence of fasciculiths and to unravel the evolutionary trends throughout nannofossil Zone NP4. Using quantitative analyses, numerous primary and secondary bioevents were identified, improving the biostratigraphic resolution of this interval. The main events recorded at Site 1262 were also identified at the Zumaia section Global Stratotype Section and Point (GSSP) of the base of the Selandian and at the Qreiya section (Egypt). The lowest occurrence of fasciculiths (represented by the LO of Gomphiolithus magnicordis and Gomphiolithus magnus) was observed in the middle part of Chron C27r, above the LO of Toweius pertusus and prior to the LO of the genus Sphenolithus. The synchroneity of the LO of fasciculiths was also verified at various latitudes, such as DSDP Site 384 (NW Atlantic), ODP Site 761B (Indian Ocean) and DSDP Site 577A (Pacific Ocean). The first and second diversification events (Steurbaut and Sztrákos, 2008, doi:10.1016/j.marmicro.2007.08.004), or radiation events (Bernaola et al., 2009, doi:10.1344/105.000000272), of fasciculiths have been thoroughly discussed and well characterized by a succession of events. The occurrence of the Latest Danian Event (LDE) and several paleoenvironmental changes recognized during this time interval, coupled with an ecological competition with Sphenolithus, appear to be the probable causes of the First and Second Radiations and the fasciculith barren interval between them. The occurrence of new morphostructures and taxa suggests evolutionary trends and a strict link between morphological evolution and paleoclimate.