44 resultados para File Objects
Resumo:
Evolutionary prospection is the study of morphological evolution and speciation in calcareous plankton from selected time-slices and key sites in the world oceans. In this context, the Neogene menardiform globorotalids serve as study objects for morphological speciation in planktic foraminifera. A downcore investigation of test morphology of the lineage of G. menardii-limbata-multicamerata during the past 8 million years was carried out in the western tropical Atlantic ODP Hole 925B. A total of 4669 specimens were measured and analyzed from 38 stratigraphic levels and compared to previous studies from DSDP Sites 502 and 503. Collection of digital images and morphometric measurements from digitized outlines were achieved using a microfossil orientation and imaging robot called AMOR and software, which was especially developed for this purpose. Most attention was given to the evolution of spiral height versus axial length of tests in keel view, but other parameters were investigated as well. The variability of morphological parameters in G. menardii, G. limbata, and G. multicamerata through time are visualized by volume density diagrams. At Hole 925B results show gradual test size increase in G. menardii until about 3.2 Ma. The combination of taxonomic determination in the light microscope with morphometric investigations shows strong morphological overlap and evolutionary continuity from ancestral to extant G. menardii (4-6 chambers in the final whorl) to the descendent but extinct G. limbata (seven chambers in the final whorl) and to G. multicamerata (>=8 chambers in the final whorl). In the morphospace defined by spiral height (dX) and axial length (dY) Globorotalia limbata and G. multicamerata strongly overlap with G. menardii. Distinction of G. limbata from G. menardii is only possible by slight differences in the number of chambers of the final whorl, nuances in spiral convexity, upper keel angles, radii of osculating circles, or by differences in reflectance of their tests. Globorotalia multicamerata can be distinguished from the other two forms by more than eight chambers in the final whorl. It appeared as two stratigraphically separate clusters during the Pliocene. Between 2.88 and 2.3 Ma G. menardii was severely restricted in size and abundance. Thereafter, it showed a rapid and prominent expansion of the upper test size extremes between 2.3 and 1.95 Ma persisting until present. The size-frequency distributions at Hole 925B are surprisingly similar to trends of menardiform globorotalids from Caribbean DSDP Site 502. There, the observations were explained as an adaptation to changes in the upper water column due to the emergence of the Isthmus of Panama. In light of more recent paleontological and geological investigations about the completion of the permanent land connection between North and South America since about 3 Ma the present study gives reason to suspect the sudden test size increase of G. menardii to reflect immigration of extra-large G. menardii from the Indian Ocean or the Pacific. It is hypothesized that during the Late Pliocene dispersal of large G. menardii into the southern to tropical Atlantic occurred during an intermittent episode of intense Agulhas Current leakage around the Cape of Good Hope and from there via warm eddy transport to the tropical Atlantic (Agulhas dispersal hypothesis).
Resumo:
Twenty-four manganese nodules from the surface of the sea floor and fifteen buried nodules were studied. With three exceptions, the nodules were collected from the area covered by Valdivia Cruise VA 04 some 1200 nautical miles southeast of Hawaii. Age determinations were made using the ionium method. In order to get a true reproduction of the activity distribution in the nodules, they were cut in half and placed for one month on nuclear emulsion plates to determine the alpha-activity of the ionium and its daughter products. Special methods of counting the alpha-tracks resolution to depth intervals of 0.125 mm. For the first time it was possible to resolve zones of rapid growth (impulse growth) with growth rates, s > 50 mm/106 yr and interruptions in growth. With few exceptions the average rate of growth of all nodules was surprisingly uniform at 4-9 mm/10 yr. No growth could be recognized radioactively in the buried nodules. One exceptional nodule has had recent impulse growth and, in the material formed, the ionium is not yet in equilibrium with its daughter products. Individual layers in one nodule from the Indian Ocean could be dated and an average time interval of t = 2600±400 yr was necessary to form one layer. The alternation between iron and manganese-rich parts of the nodules was made visible by colour differences resulting from special treatment of cut surfaces with HCl vapour. The zones of slow growth of one nodule are relatively enriched in iron. Earlier attempts to find paleomagnetic reversals in manganese nodules have been continued. Despite considerable improvement in areal resolution, reversals were not detected in the nodules studied. Comparisons of the surface structure, microstructure in section and the radiometric dating show that there are erosion surfaces and growth surfaces on the outer surfaces of the manganese nodules. The formation of cracks in the nodules was studied in particular. The model of age-dependent nodule shrinkage and cracking surprisingly indicates that the nodules break after exceeding a certain age and/or size. Consequently, the breaking apart of manganese nodules is a continuous process not of catastrophic or discontinuous origin. The microstructure of the nodules exhibits differences in the mechanism of accretion and accretion rate of material, shortly referred to as accretion form. Thus non-directional growth inside the nodules as well as a directional growth may be observed. Those nodules with large accretion forms have grown faster than smaller ones. Consequently, parallel layers indicate slow growth. The upper surfaces of the nodules, protruding into the bottom water appear to be more prone to growth disturbances than the lower surfaces, immersed in the sediment. Features of some nodules show, that as they develop, they neither turned nor rolled. Yet unknown is the mechanism that keeps the nodules at the surface during continuous sedimentation. All in all, the nodules remain the objects of their own distinctive problems. The hope of using them as a kind of history book still seems to be very remote.
Resumo:
Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10-100 km**2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10-1000 km**2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10-35 km**2) in Australia, Fiji, and Palau; and for three complex reef systems (300-600 km**2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: 'reef', 'reef type', 'geomorphic zone', and 'benthic community'. The overall accuracy of the 'geomorphic zone' classification for each of the six study sites was 76-82% using 6-10 mapping categories. For 'benthic community' classification, the overall accuracy was 52-75% with individual reefs having 14-17 categories and reef systems 20-30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.
Resumo:
Within the context of the overall ecological working programme Dynamics of Antarctic Marine Shelf Ecosystems (DynAMo) of the PS96 (ANT-XXXI/2) cruise of RV "Polarstern" to the Weddell Sea (Dec 2015 to Feb 2016), seabed imaging surveys were carried out along drift profiles by means of the Ocean Floor Observation System (OFOS) of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) Bremerhaven. The setup and mode of deployment of the OFOS was similar to that described by Bergmann and Klages (2012, doi:10.1016/j.marpolbul.2012.09.018). OFOS is a surface-powered gear equipped with two downward-looking cameras installed side-by-side: one high-resolution, wide-angle still camera (CANON® EOS 5D Mark III; lens: Canon EF 24 f/1.4L II, f stop: 13, exposure time: 1/125 sec; in-air view angles: 74° (horizontal), 53° (vertical), 84° (diagonal); image size: 5760 x 3840 px = 21 MPix; front of pressure resistant camera housing consisting of plexiglass dome port) and one high-definition color video camera (SONY® FCB-H11). The system was vertically lowered over the stern of the ship with a broadband fibre-optic cable, until it hovers approximately 1.5 m above the seabed. It was then towed after the slowly sailing ship at a speed of approximately 0.5 kn (0.25 m/s). The ship's Global Acoustic Positioning System (GAPS), combining Ultra Short Base Line (USBL), Inertial Navigation System (INS) and satellite-based Global Positioning System (GPS) technologies, was used to gain highly precise underwater position data of the OFOS. During the profile, OFOS was kept hanging at the preferred height above the seafloor by means of the live video feed and occasional minor cable-length adjustments with the winch to compensate small-scale bathymetric variations in seabed morphology. Information on water depth and height above the seafloor were continuously recorded by means of OFOS-mounted sensors (GAPS transponder, Tritech altimeter). Three lasers, which are placed beside the still camera, emit parallel beams and project red light points, arranged as an equilateral triangle with a side length of 50 cm, in each photo, thus providing a scale that can be used to calculate the seabed area depicted in each image and/or measure the size of organisms or seabed features visible in the image. In addition, the seabed area depicted was estimated using altimeter-derived height above seafloor and optical characteristics of the OFOS still camera. In automatic mode, a seabed photo, depicting an area of approximately 3.45 m**2 (= 2.3 m x 1.5 m; with variations depending on the actual height above ground), was taken every 30 seconds to obtain series of "TIMER" stills distributed at regular distances along the profiles that vary in length depending on duration of the cast. At a ship speed of 0.5 kn, the average distance between seabed images was approximately 5 m. Additional "HOTKEY" photos were taken from interesting objects (organisms, seabed features, such as putative iceberg scours) when they appeared in the live video feed (which was also recorded, in addition to the stills, for documentation and possible later analysis). If any image from this collection is used, please cite the reference as given above.
Resumo:
Scientists planning to use underwater stereoscopic image technologies are often faced with numerous problems during the methodological implementations: commercial equipment is too expensive; the setup or calibration is too complex; or the imaging processing (i.e. measuring objects in the stereo-images) is too complicated to be performed without a time-consuming phase of training and evaluation. The present paper addresses some of these problems and describes a workflow for stereoscopic measurements for marine biologists. It also provides instructions on how to assemble an underwater stereo-photographic system with two digital consumer cameras and gives step-by-step guidelines for setting up the hardware. The second part details a software procedure to correct stereo-image pairs for lens distortions, which is especially important when using cameras with non-calibrated optical units. The final part presents a guide to the process of measuring the lengths (or distances) of objects in stereoscopic image pairs. To reveal the applicability and the restrictions of the described systems and to test the effects of different types of camera (a compact camera and an SLR type), experiments were performed to determine the precision and accuracy of two generic stereo-imaging units: a diver-operated system based on two Olympus Mju 1030SW compact cameras and a cable-connected observatory system based on two Canon 1100D SLR cameras. In the simplest setup without any correction for lens distortion, the low-budget Olympus Mju 1030SW system achieved mean accuracy errors (percentage deviation of a measurement from the object's real size) between 10.2 and -7.6% (overall mean value: -0.6%), depending on the size, orientation and distance of the measured object from the camera. With the single lens reflex (SLR) system, very similar values between 10.1% and -3.4% (overall mean value: -1.2%) were observed. Correction of the lens distortion significantly improved the mean accuracy errors of either system. Even more, system precision (spread of the accuracy) improved significantly in both systems. Neither the use of a wide-angle converter nor multiple reassembly of the system had a significant negative effect on the results. The study shows that underwater stereophotography, independent of the system, has a high potential for robust and non-destructive in situ sampling and can be used without prior specialist training.
Characterization of the defined MDC types and compilation of MDC initiation times (excel-file 19 kB)
Resumo:
Mud accumulates on continental shelves under a variety of environmental conditions and results in a diverse formation of mud depocenters (MDCs). Their three-dimensional architectures have been in the focus of several recent studies. Due to some terminological confusion concerning MDCs, the present study sets out to define eight individual MDC types in terms of surface sediment distribution and internal geometry. Under conditions of substantial sediment supply, prodeltas (distal zones off river deltas; triangular sheets), subaqueous deltas (disconnected from deltas by strong normal-to-shore currents; wedge-like clinoforms), and mud patches (scattered distribution) and mud blankets (widespread covers) are formed. Forced by hydrodynamic conditions, mud belts in the strict sense (detached from source; elongated bodies), and shallow-water contourite drifts (detached from source; growing normal to prevailing current direction; triangular clinoforms) develop. Controlled by local morphology, mud entrapments (in depressions, behind morphological steps) and mud wedges (triangular clinoforms growing in flow direction) are deposited. Shelf mud deposition took place (1) during early outer-shelf drowning (~14 ka), (2) after inner-shelf inundation to maximum flooding (9.5-6.5 ka), and (3) in sub-recent times (<2 ka). Subsequent expansion may be (1) concentric, in cases where the depocenter formed near the fluvial source, (2) uni-directional, extending along advective current transport paths, and (3) progradational, forming clinoforms that grow either parallel or normal to the bottom current direction. Classical mud belts may be initiated around defined nuclei, the remote sites of which are determined by seafloor morphology rather than the location of the source. From a stratigraphic perspective, mud depocenters coincide with sea-level highstand-related, shelf-wide condensed sections. They often show a conformable succession from transgressive to highstand systems tract stages.
Resumo:
An autonomous vessel, the Offshore Sensing Sailbuoy, was used for wave measurements near the Ekofisk oil platform complex in the North Sea (56.5 N, 3.2 E, operated by ConocoPhilllips) from 6 to 20 November 2015. Being 100% wind propelled, the Sailbuoy has two-way communication via the Iridium network and has the capability for missions of six months or more. It has previously been deployed in the Arctic, Norwegian Sea and the Gulf of Mexico, but this was the first real test for wave measurements. During the campaign it held position about 20km northeast of Ekofisk (on the lee side) during rough conditions. Mean wind speed measured at Ekofisk during the campaign was near 9.8m/s, with a maximum of 20.4m/s, with wind mostly from south and south west. A Datawell MOSE G1000 GPS based 2Hz wave sensor was mounted on the Sailbuoy. Mean significant wave height (Hs 1hr) measured was 3m, whereas maximum Hs was 6m. Mean wave period was 7.7s, while maximum wave height, Hmax, was 12.6m. These measurements have been compared with non-directional Waverider observations at the Ekofisk complex. Mean Hs at Ekofisk was 3.1m, while maximum Hs was 6.5m. Nevertheless, the correlation between the two measurements was high (97%). Spectra comparison was also good, except for low Hs (~1m), where the motion of the vessel seemed to influence the measurements. Nevertheless, the Sailbuoy performed well during this campaign, and results suggests that it is a suitable platform for wave measurements in rather rough sea conditions.