71 resultados para Faust, d. ca. 1540.
Resumo:
Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean-atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
Resumo:
During three to four d18O cycles (determined on Globigerinoides ruber), more positive d18O (= higher global ice volume) values correlated with higher Globorotalia menardii percentages, total numbers of benthic foraminifers, number of benthic foraminifer species, and the percent of total foraminifers composed of benthic foraminifers. During the same intervals, barite and insoluble residues also generally recorded higher values; however, there was no clear evidence of systematic variation in cadmium/calcium ratios (in benthic foraminifers). Maximum percentages of Globigerinoides sacculifer and Globigerinoides ruber correlate with more negative d18O (= lower global ice volume) values, although they sometimes appear to lead the d18O changes by < =4,000 yr. The increase in percentage of the tropical "divergence" planktonic foraminifer species G. menardii and the reduction of the "nondivergence" tropical species G. ruber and G. sacculifer at times of inferred ice growth is attributed to periodic intensification of divergence associated with the Equatorial Counter Current. Barite and insoluble residue sedi- mentation at the site also generally show a relative increase at those times.
Resumo:
Mg/Ca in planktonic foraminifers carries two main signals: calcification temperature and postdepositional test dissolution. Shell dissolution thus distorts water temperature reconstructions made with Mg/Ca in foraminifers. This problem could be resolved by quantifying the impact of carbonate dissolution on Mg/Ca with an independent, temperature-insensitive deep-sea calcite dissolution proxy, such as the Globorotalia menardii fragmentation index (MFI). To test the validity of this approach, we measured Mg/Ca in the tests of several planktonic foraminifers and MFI in core tops collected over a wide geographic region of the tropical Pacific and covering a wide range of deep-sea calcite dissolution and seawater temperature. We confirm that Mg/Ca from different species have different susceptibility to temperature and dissolution. Mg/Ca in surface-dwelling Globigerina bulloides is controlled by calcification temperature and is largely unaffected by carbonate dissolution estimated from MFI. In contrast, Mg/Ca in deeper dwelling G. menardii is minimally sensitive to temperature and dominantly affected by dissolution. Mg/Ca in Neogloboquadrina dutertrei and Pulleniatina obliquiloculata are significantly affected by both temperature and dissolution, and MFI can be effectively used to correct temperature estimates from these species for calcite dissolution. Additional variables besides temperature and dissolution appear to control Mg/Ca in Globorotalia tumida, and their identification is a prerequisite for interpreting elemental shell composition in this species. Combining down-core measurements of Mg/Ca in multiple foraminifer species with MFI provides a powerful tool for reconstructing past changes in the upper water column temperature structure in the tropical Pacific.
Resumo:
The impact of ocean acidification caused by the increasing atmospheric CO2 has been studied in marine calcifiers, including hermatypic corals. However, the effect of elevated pCO2 on the early developmental life-cycle stage of corals has been little studied. In this study, we reared polyps of Acropora digitifera in seawater at pHT 6.55, 7.31, 7.64, 7.77, and 8.03, controlled by CO2 bubbling. We measured the dry weights of polyp skeletons after the 40-d experiment to investigate the relationship between the seawater aragonite saturation state and polyp growth. In addition, we measured skeletal U/Ca ratio to estimate their pH dependence. Skeletal weights of coral polyps increased with the aragonite saturation state and reached an apparent saturation plateau above pH 7.77. U/Ca ratios had a strong inverse relationship with pH and a negligible relationship with skeletal growth rate (polyp weight), suggesting that skeletal U/Ca could be useful for reconstructing paleo-pH.
Resumo:
We investigate aragonitic skeletons of the Caribbean sclerosponge Ceratoporella nicholsoni from Jamaica, 20 m below sea level (mbsl), and Pedro Bank, 125 mbsl. We use d18O and Sr/Ca ratios as temperature proxies to reconstruct the Caribbean mixed layer and thermocline temperature history since 1400 A.D. with a decadal time resolution. Our age models are based on U/Th dating and locating of the radiocarbon bomb spike. The modern temperature difference between the two sites is used to tentatively calibrate the C. nicholsoni Sr/Ca thermometer. The resulting calibration points to a temperature sensitivity of Sr/Ca in C. nicholsoni aragonite of about -0.1 mmol/mol/K. Our Sr/Ca records reveal a pronounced warming from the early 19th to the late 20th century, both at 20 and 125 mbsl. Two temperature minima in the shallow water record during the late 17th and early 19th century correspond to the Maunder and Dalton sunspot minima, respectively. Another major cooling occurred in the late 16th century and is not correlatable with a sunspot minimum. The temperature contrast between the two sites decreased from the 14th century to a minimum in the late 17th century and subsequently increased to modern values in the early 19th century. This is interpreted as a long-term deepening and subsequent shoaling of the Caribbean thermocline. The major trends of the Sr/Ca records are reproduced in both specimens but hardly reflected in the d18O records.