52 resultados para Evolution and phylogenetics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The marine diazotrophic cyanobacterium Trichodesmium responds to elevated atmospheric CO2 partial pressure (pCO2) with higher N2 fixation and growth rates. To unveil the underlying mechanisms, we examined the combined influence of pCO2(150 and 900 µatm) and light (50 and 200 µmol photons m-2 s-1) on TrichodesmiumIMS101. We expand on a complementary study that demonstrated that while elevated pCO2 enhanced N2 fixation and growth, oxygen evolution and carbon fixation increased mainly as a response to high light. Here, we investigated changes in the photosynthetic fluorescence parameters of photosystem II, in ratios of the photosynthetic units (photosystem I:photosystem II), and in the pool sizes of key proteins involved in the fixation of carbon and nitrogen as well as their subsequent assimilation. We show that the combined elevation in pCO2 and light controlled the operation of the CO2-concentrating mechanism and enhanced protein activity without increasing their pool size. Moreover, elevated pCO2 and high light decreased the amounts of several key proteins (NifH, PsbA, and PsaC), while amounts of AtpB and RbcL did not significantly change. Reduced investment in protein biosynthesis, without notably changing photosynthetic fluxes, could free up energy that can be reallocated to increase N2 fixation and growth at elevated pCO2 and light. We suggest that changes in the redox state of the photosynthetic electron transportchain and posttranslational regulation of key proteins mediate the high flexibility in resources and energy allocation in Trichodesmium. This strategy should enableTrichodesmium to flourish in future surface oceans characterized by elevated pCO2, higher temperatures, and high light.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although oceanwarming and acidification are recognized as two major anthropogenic perturbations of today's oceanswe know very little about how marine phytoplankton may respond via evolutionary change.We tested for adaptation to ocean warming in combination with ocean acidification in the globally important phytoplankton species Emiliania huxleyi. Temperature adaptation occurred independently of ocean acidifcation levels. Exponential growth rates were were up to 16% higher in populations adapted for one year to warming when assayed at their upper thermal tolerance limit. Particulate inorganic (PIC) and organic (POC) carbon production was restored to values under present-day ocean conditions, owing to adaptive evolution, and were 101% and 55% higher under combined warming and acidification, respectively, than in non-adapted controls. Cells also evolved to a smaller size while they recovered their initial PIC:POC ratio even under elevated CO2. The observed changes in coccolithophore growth, calcite and biomass production, cell size and elemental composition demonstrate the importance of evolutionary processes for phytoplankton performance in a future ocean. At the end of a 1-yr temperature selection phase, we conducted a reciprocal assay experiment in which temperature-adapted asexual populations were compared to the respective non-adapted control populations under high temperature, and vice versa (1. Assay Data, Dataset #835336). Mean exponential growth rates ? in treatments subjected to high temperature increased rapidly under all high temperature-CO2 treatment combinations during the temperature selection phase (2. time series, Dataset #835339).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ecological work carried out on the Antarctic and Magellan shelves since the first IBMANT conference held at the UMAG, Punta Arenas in 1997 is summarized to identify areas where progress has been made and others, where impor- tant gaps have remained in understanding past and present interaction between the Antarctic and the southern tip of South America. This information is complementary to a review on shallow-water work along the Scotia Arc (Barnes, 2005) and recent work done in the deep sea (Brandt and Hilbig, 2004). While principally referring to shipboard work in deeper water, above all during the recent international EASIZ and LAMPOS campaigns, relevant work from shore stations is also included. Six years after the first IBMANT symposium, significant progress has been made along the latitudinal gradient from the Magellan region to the high Antarctic in the fields of biodiversity, biogeography and community structure, life strategies and adaptations, the role of disturbance and its significance for biodiversity, and trophic coupling of the benthic realm with the water column and sea ice. A better understanding has developed of the role of evolutionary and ecological factors in shaping past and present-day environmental conditions, species composition and distribution, and ecosystem functioning. Furthermore, the science community engaged in unravelling Antarctic-Magellan interactions has advanced in methodological aspects such as new analytical approaches for comparing biodiversity derived from visual methods, growth and age determination, trophic modelling using stable isotope ratios, and molecular approaches for taxonomic and phylogenetic purposes. At the same time, much effort has been invested to complement the species inventory of the two adjacent regions. However, much work remains to be done to fill the numerous gaps. Some perspectives are outlined in this review, and sug- gestions are made where particular emphasis should be placed in future work, much of which will be developed in the frame of SCAR's EBA (Evolution and Biodiversity in the Antarctic) programme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 105, three sites (Sites 645 through 647) were drilled in Baffin Bay and the Labrador Sea to examine the tectonic evolution and the climatic and oceanic histories of this region. Biostratigraphic and magnetostratigraphic results vary at each site, while stratigraphic resolution depends on the limited abundance of marker species and the completeness of the paleomagnetic record. Because of the paucity of planktonic microfossils and the poor paleomagnetic record signatures, stratigraphic determinations at Site 645 often rely on defining minimum temporal constraints on specific samples or stratigraphic intervals. The completed stratigraphy indicates that the sedimentary sequence recovered at Site 645 is early Miocene to Holocene in age. The magnetostratigraphy and biostratigraphies are better defined at Sites 646 and 647 in the Labrador Sea. Site 646 generally contains a well-developed magnetostratigraphy and calcareous microfossil biostratigraphy. This biostratigraphy is based on calcareous nannofossils and planktonic foraminifers typical of the North Atlantic Ocean. Siliceous microfossils are also present at Site 646, but they are restricted to upper Pliocene through Holocene sediments. The stratigraphic sequence recovered at Site 646 is late Miocene to Holocene in age. Based primarily on the calcareous nannofossil stratigraphy, the sequence recovered at Site 647 consists of lower Eocene to lower Oligocene, lower Miocene, upper Miocene, and upper Pliocene through Holocene sediments. Three hiatuses are present in this sequence: the older hiatus separates lower Oligocene sediments from lower Miocene sediments, another hiatus separates lower Miocene sediments from upper Miocene sediments, and the youngest one separates upper Miocene from upper Pliocene sediments. A magnetostratigraphy is defined for the interval from the Gauss/Matuyama boundary through the Brunhes (Clement et al., this volume). Both planktonic foraminifers and siliceous microfossils have restricted occurrences. Planktonic foraminifers occur in Pliocene and younger sediments, and siliceous microfossils are present in lower Miocene and lower Oligocene sediments. The near-continuous Eocene through lower Oligocene sequence recovered at Site 647 allows the calcareous nannofossils and diatom stratigraphies at this site to act as a Paleogene stratigraphic framework. This framework can be compared with the stratigraphy previously completed for DSDP Site 112.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evolutionary prospection is the study of morphological evolution and speciation in calcareous plankton from selected time-slices and key sites in the world oceans. In this context, the Neogene menardiform globorotalids serve as study objects for morphological speciation in planktic foraminifera. A downcore investigation of test morphology of the lineage of G. menardii-limbata-multicamerata during the past 8 million years was carried out in the western tropical Atlantic ODP Hole 925B. A total of 4669 specimens were measured and analyzed from 38 stratigraphic levels and compared to previous studies from DSDP Sites 502 and 503. Collection of digital images and morphometric measurements from digitized outlines were achieved using a microfossil orientation and imaging robot called AMOR and software, which was especially developed for this purpose. Most attention was given to the evolution of spiral height versus axial length of tests in keel view, but other parameters were investigated as well. The variability of morphological parameters in G. menardii, G. limbata, and G. multicamerata through time are visualized by volume density diagrams. At Hole 925B results show gradual test size increase in G. menardii until about 3.2 Ma. The combination of taxonomic determination in the light microscope with morphometric investigations shows strong morphological overlap and evolutionary continuity from ancestral to extant G. menardii (4-6 chambers in the final whorl) to the descendent but extinct G. limbata (seven chambers in the final whorl) and to G. multicamerata (>=8 chambers in the final whorl). In the morphospace defined by spiral height (dX) and axial length (dY) Globorotalia limbata and G. multicamerata strongly overlap with G. menardii. Distinction of G. limbata from G. menardii is only possible by slight differences in the number of chambers of the final whorl, nuances in spiral convexity, upper keel angles, radii of osculating circles, or by differences in reflectance of their tests. Globorotalia multicamerata can be distinguished from the other two forms by more than eight chambers in the final whorl. It appeared as two stratigraphically separate clusters during the Pliocene. Between 2.88 and 2.3 Ma G. menardii was severely restricted in size and abundance. Thereafter, it showed a rapid and prominent expansion of the upper test size extremes between 2.3 and 1.95 Ma persisting until present. The size-frequency distributions at Hole 925B are surprisingly similar to trends of menardiform globorotalids from Caribbean DSDP Site 502. There, the observations were explained as an adaptation to changes in the upper water column due to the emergence of the Isthmus of Panama. In light of more recent paleontological and geological investigations about the completion of the permanent land connection between North and South America since about 3 Ma the present study gives reason to suspect the sudden test size increase of G. menardii to reflect immigration of extra-large G. menardii from the Indian Ocean or the Pacific. It is hypothesized that during the Late Pliocene dispersal of large G. menardii into the southern to tropical Atlantic occurred during an intermittent episode of intense Agulhas Current leakage around the Cape of Good Hope and from there via warm eddy transport to the tropical Atlantic (Agulhas dispersal hypothesis).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat-sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The palaeoenvironmental development of the western Laptev Sea is understood primarily from investigations of exposed cliffs and surface sediment cores from the shelf. In 2005, a core transect was drilled between the Taymyr Peninsula and the Lena Delta, an area that was part of the westernmost region of the non-glaciated Beringian landmass during the late Quaternary. The transect of five cores, one terrestrial and four marine, taken near Cape Mamontov Klyk reached 12 km offshore and 77 m below sea level. A multiproxy approach combined cryolithological, sedimentological, geochronological (14C-AMS, OSL on quartz, IR-OSL on feldspars) and palaeoecological (pollen, diatoms) methods. Our interpretation of the proxies focuses on landscape history and the transition of terrestrial into subsea permafrost. Marine interglacial deposits overlain by relict terrestrial permafrost within the same offshore core were encountered in the western Laptev Sea. Moreover, the marine interglacial deposits lay unexpectedly deep at 64 m below modern sea level 12 km from the current coastline, while no marine deposits were encountered onshore. This implies that the position of the Eemian coastline presumably was similar to today's. The landscape reconstruction suggests Eemian coastal lagoons and thermokarst lakes, followed by Early to Middle Weichselian fluvially dominated terrestrial deposition. During the Late Weichselian, this fluvial landscape was transformed into a poorly drained accumulation plain, characterized by widespread and broad ice-wedge polygons. Finally, the shelf plain was flooded by the sea during the Holocene, resulting in the inundation and degradation of terrestrial permafrost and its transformation into subsea permafrost.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.