42 resultados para Energy budget
Resumo:
Acidification of the World's oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism's energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels "low", "medium" and "high" for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.
Resumo:
We show here that increased variability of temperature and pH synergistically negatively affects the energetics of intertidal zone crabs. Under future climate scenarios, coastal ecosystems are projected to have increased extremes of low tide-associated thermal stress and ocean acidification-associated low pH, the individual or interactive effects of which have yet to be determined. To characterize energetic consequences of exposure to increased variability of pH and temperature, we exposed porcelain crabs, Petrolisthes cinctipes, to conditions that simulated current and future intertidal zone thermal and pH environments. During the daily low tide, specimens were exposed to no, moderate or extreme heating, and during the daily high tide experienced no, moderate or extreme acidification. Respiration rate and cardiac thermal limits were assessed following 2.5 weeks of acclimation. Thermal variation had a larger overall effect than pH variation, though there was an interactive effect between the two environmental drivers. Under the most extreme temperature and pH combination, respiration rate decreased while heat tolerance increased, indicating a smaller overall aerobic energy budget (i.e. a reduced O2 consumption rate) of which a larger portion is devoted to basal maintenance (i.e. greater thermal tolerance indicating induction of the cellular stress response). These results suggest the potential for negative long-term ecological consequences for intertidal ectotherms exposed to increased extremes in pH and temperature due to reduced energy for behavior and reproduction.
Resumo:
Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.
Resumo:
A general study of structure, biomass estimates and dynamics on the macrofauna was carried out in August 1975 and March 1976 during PREFLEX (1975) and FLEX (1976), the Fladen Ground Experiment. On the basis of these data an attempt was made to estimate macrobenthic production expressed as minimum production (MP). The macrobenthic production is discussed together with meiobenthic annual production and with indirectly estimated microbenthic production in relation to an energy input from the water column of about 25 g C m**-2 year**-1. From the production estimates of the three benthic components a rough energy budget is proposed. Sampling was performed at five stations for endofauna twice during the time of investigation and for epifauna once. At each station two replicate box core samples (30 X 20 cm) were taken for endofauna. Epifauna was sampled with an Agassiz trawl once at each station. The total numbers of endofauna increased from station 1 to 5. This was valid as well for August 1975 (4,233-12,166 individuals per m**2 and 10 cm sediment depth) as for March 1976 (1,008-2,925 individuals). The polychaetes were the dominant organisms with a share of 33 to 62 %. The densities for the endofauna decreased from August 1975 to March 1976 by a mean factor of 2.8. Abundances of epifauna amounted to values between 11 and 102 individuals per 1000 m**2. The biomass dry weights (DWT) for macrobenthic endofauna varied between 0.97 g DWT m**-2 and 6.42 g DWT m**-2 in August 1975 and between 0.27 g DWT m**-2 and 2.64 g DWT m**-2 in March 1976. The mean amounted to 1.74 g DWT m**-2. Dry weights of epifauna biomass gave values between 4.9 and 83.1 g DWT * 1000 m**-2. The minimum production for the total macro-endofauna at Fladen Ground amounted to 1.43 g DWT m**-2 yr**-1 or 0.82 g C m**-2 yr**-1. This resulted in a minimum turnover rate (P/B) of 0.8. The share produced by the polychaetes amounted to 1.06g DWT m**-2 yr**-1 or 74 %.
Resumo:
Anthropogenic CO2 emissions have caused seawater temperature elevation and ocean acidification. In view of both phenomena are occurring simultaneously, their combined effects on marine species must be experimentally evaluated. The purpose of this study was to estimate the combined effects of seawater acidification and temperature increase on the energy budget of the thick shell mussel Mytilus coruscus. Juvenile mussels were exposed to six combined treatments with three pH levels (8.1, 7.7 and 7.3) * two temperatures (25 °C and 30 °C) for 14 d. We found that clearance rates (CRs), food absorption efficiencies (AEs), respiration rates (RRs), ammonium excretion rates (ER), scope for growth (SFG) and O:N ratios were significantly reduced by elevated temperature sometimes during the whole experiments. Low pH showed significant negative effects on RR and ER, and significantly increased O:N ratios, but showed almost no effects on CR, AE and SFG of M. coruscus. Nevertheless, their interactive effects were observed in RR, ER and O:N ratios. PCA revealed positive relationships among most physiological indicators, especially between SFG and CR under normal temperatures compared to high temperatures. PCA also showed that the high RR was closely correlated to an increasing ER with increasing pH levels. These results suggest that physiological energetics of juvenile M. coruscus are able to acclimate to CO2 acidification with a little physiological effect, but not increased temperatures. Therefore, the negative effects of a temperature increase could potentially impact the ecophysiological responses of M. coruscus and have significant ecological consequences, mainly in those habitats where this species is dominant in terms of abundance and biomass.
Resumo:
Our ability to project the impact of global change on marine ecosystem is limited by our poor understanding on how to predict species sensitivity. For example, the impact of ocean acidification is highly species-specific, even in closely related taxa. The aim of this study was to test the hypothesis that the tolerance range of a given species to decreased pH corresponds to their natural range of exposure. Larvae of the green sea urchin Strongylocentrotus droebachiensis were cultured from fertilization to metamorphic competence (29 days) under a wide range of pH (from pHT = 8.0/pCO2 ~ 480 ?atm to pHT = 6.5/pCO2 ~ 20 000 ?atm) covering present (from pHT 8.7 to 7.6), projected near-future variability (from pHT 8.3 to 7.2) and beyond. Decreasing pH impacted all tested parameters (mortality, symmetry, growth, morphometry and respiration). Development of normal, although showing morphological plasticity, swimming larvae was possible as low as pHT >= 7.0. Within that range, decreasing pH increased mortality and asymmetry and decreased body length (BL) growth rate. Larvae raised at lowered pH and with similar BL had shorter arms and a wider body. Relative to a given BL, respiration rates and stomach volume both increased with decreasing pH suggesting changes in energy budget. At the lowest pHs (pHT <= 6.5), all the tested parameters were strongly negatively affected and no larva survived past 13 days post fertilization. In conclusion, sea urchin larvae appeared to be highly plastic when exposed to decreased pH until a physiological tipping point at pHT = 7.0. However, this plasticity was associated with direct (increased mortality) and indirect (decreased growth) consequences for fitness.
Resumo:
In this study, we present the winter time surface energy balance at a polygonal tundra site in northern Siberia based on independent measurements of the net radiation, the sensible heat flux and the ground heat flux from two winter seasons. The latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The long-wave radiation is found to be the dominant factor in the surface energy balance. The radiative losses are balanced to about 60 % by the ground heat flux and almost 40 % by the sensible heat fluxes, whereas the contribution of the latent heat flux is small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Large spatial differences in the surface energy balance are observed between tundra soils and a small pond. The ground heat flux released at a freezing pond is by a factor of two higher compared to the freezing soil, whereas large differences in net radiation between the pond and soil are only observed at the end of the winter period. Differences in the surface energy balance between the two winter seasons are found to be related to differences in snow depth and cloud cover which strongly affect the temperature evolution and the freeze-up at the investigated pond.
Resumo:
The specific transporters involved in maintenance of blood pH homeostasis in cephalopod molluscs have not been identified to date. Using in situ hybridization and immuno histochemical methods, we demonstrate that Na+/K+-ATPase (soNKA), a V-type H+-ATPase (soV-HA), and Na+/HCO3- cotransporter (soNBC) are co-localized in NKA-rich cells in the gills of Sepia officinalis. mRNA expression patterns of these transporters and selected metabolic genes were examined in response to moderately elevated seawater pCO2 (0.16 and 0.35 kPa) over a time-course of six weeks in different ontogenetic stages. The applied CO2 concentrations are relevant for ocean acidification scenarios projected for the coming decades. We determined strong expression changes in late stage embryos and hatchlings, with one to three log2-fold reductions in soNKA, soNBCe, socCAII and COX. In contrast, no hypercapnia induced changes in mRNA expression were observed in juveniles during both short- and long-term exposure. However a transiently increased demand of ion regulatory demand was evident during the initial acclimation reaction to elevated seawater pCO2. Gill Na+/K+-ATPase activity and protein concentration were increased by approximately 15% in during short (2-11 day), but not long term (42 day) exposure. Our findings support the hypothesis that the energy budget of adult cephalopods is not significantly compromised during long-term exposure to moderate environmental hypercapnia. However, the down regulation of ion-regulatory and metabolic genes in late stage embryos, taken together with a significant reduction in somatic growth, indicates that cephalopod early life stages are challenged by elevated seawater pCO2.
Resumo:
Due to the ongoing effects of climate change, phytoplankton are likely to experience enhanced irradiance, more reduced nitrogen, and increased water acidity in the future ocean. Here, we used Thalassiosira pseudonana as a model organism to examine how phytoplankton adjust energy production and expenditure to cope with these multiple, interrelated environmental factors. Following acclimation to a matrix of irradiance, nitrogen source, and CO2 levels, the diatom's energy production and expenditures were quantified and incorporated into an energetic budget to predict how photosynthesis was affected by growth conditions. Increased light intensity and a shift from inline image to inline image led to increased energy generation, through higher rates of light capture at high light and greater investment in photosynthetic proteins when grown on inline image. Secondary energetic expenditures were adjusted modestly at different culture conditions, except that inline image utilization was systematically reduced by increasing pCO2. The subsequent changes in element stoichiometry, biochemical composition, and release of dissolved organic compounds may have important implications for marine biogeochemical cycles. The predicted effects of changing environmental conditions on photosynthesis, made using an energetic budget, were in good agreement with observations at low light, when energy is clearly limiting, but the energetic budget over-predicts the response to inline image at high light, which might be due to relief of energetic limitations and/or increased percentage of inactive photosystem II at high light. Taken together, our study demonstrates that energetic budgets offered significant insight into the response of phytoplankton energy metabolism to the changing environment and did a reasonable job predicting them.