90 resultados para Enclosed steppe
Resumo:
Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.
Resumo:
Anthropogenic increases in the partial pressure of CO2 (pCO2) cause ocean acidification, declining calcium carbonate saturation states, reduced coral reef calcification and changes in the compositions of marine communities. Most projected community changes due to ocean acidification describe transitions from hard coral to non-calcifying macroalgal communities; other organisms have received less attention, despite the biotic diversity of coral reef communities. We show that the spatial distributions of both hard and soft coral communities in volcanically acidified, semi-enclosed waters off Iwotorishima Island, Japan, are related to pCO2 levels. Hard corals are restricted to non-acidified low- pCO2 (225 µatm) zones, dense populations of the soft coral Sarcophyton elegans dominate medium- pCO2 (831 µatm) zones, and both hard and soft corals are absent from the highest- pCO2 (1,465 µatm) zone. In CO2-enriched culture experiments, high- pCO2 conditions benefited Sarcophyton elegans by enhancing photosynthesis rates and did not affect light calcification, but dark decalcification (negative net calcification) increased with increasing pCO2. These results suggest that reef communities may shift from reef-building hard corals to non-reef-building soft corals under pCO2 levels (550-970 µatm) predicted by the end of this century, and that higher pCO2 levels would challenge the survival of some reef organisms.
Resumo:
Neodymium isotopes and concentrations from 11 stations in the Caribbean, Gulf of Mexico, Florida Straits and close to the mouth of the Orinoco. CTD data (potential temperature, salinity, potential density and oxygen concentration) for the same samples are also reported. Sampling took place during February and March 2009 as part of the Meteor Cruise 78, Leg 1.
Resumo:
Ground penetrating radar (GPR) and capacitive coupled resistivity (CCR) measurements were conducted in order to image subsurface structures in the Orkhon Valley, Central Mongolia. The data are extended by information from drill cores to the entire transects distinguishing different sedimentary environments in the valley. The Orkhon Valley is part of the high sensitive Steppe region in Central Mongolia, one of the most important cultural landscapes in Central Asia. There, archaeological, geoarchaeological and sedimentological research aims to reconstruct the landscape evolution and the interaction between man and environment during the last millennia since the first settlement. In May 2009 and 2010 geophysical surveys have been conducted including transects with lengths between 1.5 and 30 km crossing the entire valley and a kilometre-scaled grid in the southern part of the investigation area. The geoelectrical and GPR data revealed the existence of two layers characterized by different resistivity values and radar reflectors. The two layers do not only represent material contrasts, but also reflect the influence of sporadic permafrost which occurs in several areas of Mongolia. The results help to reconstruct the evolution of the braided Orkhon River and therefore give important hints to understand the environmental history of the Orkhon Valley.
Resumo:
Exotic limestone masses with silicified fossils, enclosed within deep-water marine siliciclastic sediments of the Early to Middle Miocene Astoria Formation, are exposed along the north shore of the Columbia River in southwestern Washington, USA. Samples from four localities were studied to clarify the origin and diagenesis of these limestone deposits. The bioturbated and reworked limestones contain a faunal assemblage resembling that of modern and Cenozoic deep-water methane-seeps. Five phases make up the paragenetic sequence: (1) micrite and microspar; (2) fibrous, banded and botryoidal aragonite cement, partially replaced by silica or recrystallized to calcite; (3) yellow calcite; (4) quartz replacing carbonate phases and quartz cement; and (5) equant calcite spar and pseudospar. Layers of pyrite frequently separate different carbonate phases and generations, indicating periods of corrosion. Negative d13Ccarbonate values as low as -37.6 per mill V-PDB reveal an uptake of methane-derived carbon. In other cases, d13Ccarbonate values as high as 7.1 per mill point to a residual, 13C-enriched carbon pool affected by methanogenesis. Lipid biomarkers include 13C-depleted, archaeal 2,6,10,15,19-pentamethylicosane (PMI; d13C: -128 per mill), crocetane and phytane, as well as various iso- and anteiso-carbon chains, most likely derived from sulphate-reducing bacteria. The biomarker inventory proves that the majority of the carbonates formed as a consequence of sulphate-dependent anaerobic oxidation of methane. Silicification of fossils and early diagenetic carbonate cements as well as the precipitation of quartz cement - also observed in other methane-seep limestones enclosed in sediments with abundant diatoms or radiolarians - is a consequence of a preceding increase of alkalinity due to anaerobic oxidation of methane, inducing the dissolution of silica skeletons. Once anaerobic oxidation of methane has ceased, the pH drops again and silica phases can precipitate.
Resumo:
Vestimentiferan tube worms are prominent members of modern methane seep communities and are totally reliant as adults on symbiotic sulphide-oxidizing bacteria for their nutrition. The sulphide is produced in the sediment by a biochemical reaction called the anaerobic oxidation of methane (AOM). A well-studied species from the Gulf of Mexico shows that seep vestimentiferans 'mine' sulphide from the sediment using root-like, thin walled, permeable posterior tube extensions, which can also be used to pump sulphate and possibly hydrogen ions from the soft tissue back into the sediment to increase the local rate of AOM. The 'root-balls' of exhumed seep vestimentiferans are intimately associated with carbonate nodules, which are a result of AOM. We have studied vestimentiferan specimens and associated carbonates from seeps at the Kouilou pockmark field on the Congo deep-sea fan and find that some of the posterior 'root' tubes of living specimens are enclosed with carbonate indurated sediment and other, empty examples are partially or completely replaced by the carbonate mineral aragonite. This replacement occurs from the outside of the tube wall inwards and leaves fine-scale relict textures of the original organic tube wall. The process of mineralization is unknown, but is likely a result of post-mortem microbial decay of the tube wall proteins by microorganisms or the precipitation from locally high flux of AOM derived carbonate ions. The aragonite-replaced tubes from the Kouilou pockmarks show similar features to carbonate tubes in ancient seep deposits and make it more likely that many of these fossil tubes are those of vestimentiferans. These observations have implications for the supposed origination of this group, based on molecular divergence estimates.
Resumo:
Textural and compositional differences were found between gravity-flow sheets in an open-ocean environment on the northern slope of Little Bahama Bank (Site 628, Pliocene turbidite sequence) and in a closed-basin depositional setting (Site 632, Quaternary turbidite sequence). Mud-supported debris-flow sheets were cored at Site 628. Average mean grain size of the turbidite samples was lower, mud content was higher, and sorting was poorer than in comparable samples from Site 632. This reflects the deposition of proximal, low-energy turbidity currents and debris flows on a base-ofslope carbonate apron. No mud-supported debris-flow sheets were deposited in the investigated sediment sequence of Hole 632A. Many larger turbidity currents from around the margins of Exuma Sound may have reached this central basin setting, depositing sediments that had been transported over longer distances. Planktonic components dominate in the grain-sized fraction (500-1000 µm) of turbidite samples from Hole 628A, while platform detritus is rare. We interpreted this as resulting from the erosion and reworking of a large area of open-ocean slope sediments by gravity flows. In contrast, large amounts of benthic and platform components were found in the turbidite samples of Hole 632A. This may be explained by the fact that the slopes of the enclosed Exuma Sound are steep, and turbidity currents bypassed much of these slopes through pronounced channels, delivering more shallow-water detritus to the deep basin. Erosion of slope sediments, a possible source area of planktonic detritus, is assumed to be low. The small slope area in relation to the larger surrounding platform areas and lower production of planktonic components in the enclosed waters of Exuma Sound may also explain the observed low number of planktonic components at Hole 632A. Turbidite material from both open-ocean and enclosed-basin environments was deposited at Site 635.
Resumo:
Ocean Drilling Program Leg 129 recovered chert, porcellanite, and radiolarite from Middle Jurassic to lower Miocene strata from the western Pacific that formed by different processes and within distinct host rocks. These cherts and porcellanites formed by (1) replacement of chalk or limestone, (2) silicification and in-situ silica phase-transformation of bedded clay-bearing biosiliceous deposits, (3) high-temperature silicification adjacent to volcanic flows or sills, and (4) silica phase-transformation of mixed biosiliceous-volcaniclastic sediments. Petrologic and O-isotopic studies highlight the key importance of permeability and time in controlling the formation of dense cherts and porcellanites. The formation of dense, vitreous cherts apparently requires the local addition and concentration of silica. The influence of permeability is shown by two examples, in which: (1) fragments of originally identical radiolarite that were differentially isolated from pore-water circulation by cement-filled fractures were silicified to different degrees, and (2) by the development of secondary porosity during the opal-CT to quartz inversion within conditions of negligible permeability. The importance of time is shown by the presence of quartz chert below, but not above, a Paleogene hiatus at Site 802, indicating that between 30 and 52 m.y. was required for the formation of quartz chert within calcareous-siliceous sediments. The oxygen-isotopic composition for all Leg 129 carbonate- and Fe/Mn-oxide-free whole-rock samples of chert and porcellanite range widely from d18O = 27.8 per mil to 39.8 per mil vs. V-SMOW. Opal-CT samples are consistently richer in 18O (34.1 per mil to 39.3 per mil) than quartz subsamples (27.8 per mil to 35.7 per mil). Using the O-isotopic fractionation expression for quartz-water of Knauth and Epstein (1976) and assuming d18Opore water = -1.0 per mil, model temperatures of formation are 7°-26°C for carbonate-replacement quartz cherts, 22°-25°C for bedded quartz cherts, and 32°-34°C for thermal quartz cherts. Large variations in O-isotopic composition exist at the same burial depth between co-existing silica phases in the same sample and within the same phase in adjacent lithologies. For example, quartz has a wide range of isotopic compositions within a single breccia sample; d18O = 33.4 per mil and 28.0 per mil for early and late stages of fracture-filling cementation, and 31.6 per mil and 30.2 per mil for microcrystalline quartz precipitation within enclosed chert and radiolarite fragments. Similarly, opal-CT d101 spacing varies across lithologic or diagenetic boundaries within single samples. Co-occurring opal-CT and chalcedonic quartz in shallowly buried chert and porcellanite from Sites 800 and 801 have an 8.7 per mil difference in d18O, suggesting that pore waters in the Pigafetta Basin underwent a Tertiary shift to strongly 18O-depleted values due to alteration of underlying Aptian to Albian-Cenomanian volcaniclastic deposits after opal-CT precipitation, but prior to precipitation of microfossil-filling chalcedony.
Resumo:
Dense, CO2-rich fluid inclusions hosted by plagioclases, An45 to An54, of the O.-v.-Gruber- Anorthosite body, central Dronning Maud Land, East Antarctica, contain varying amounts of small calcite, paragonite and pyrophyllite crystals detected by Raman microspectroscopy. These crystals are reaction products that have formed during cooling of the host and the original CO2-rich H2O-bearing enclosed fluid. Variable amounts of these reaction products illustrates that the reaction did not take place uniformly in all fluid inclusions, possibly due to differences in kinetics as caused by differences in shape and size, or due to compositional variation in the originally trapped fluid. The reaction albite + 2anorthite + 2H2O + 2CO2 = pyrophyllite + paragonite + 2calcite was thermodynamically modelled with consideration of different original fluid compositions. Although free H2O is not detectable in most fluid inclusions, the occurrence of OH-bearing sheet silicates indicates that the original fluid was not pure CO2, but contained significant amounts of H2O. Compared to an actual fluid inclusion it is obvious, that volume estimations of solid phases can be used as a starting point to reverse the retrograde reaction and recalculate the compositional and volumetrical properties of the original fluid. Isochores for an unmodified inclusion can thus be reconstructed, leading to a more realistic estimation of P-T conditions during earlier metamorphic stages or fluid capturing.
Resumo:
Oxygen and carbon isotopes have been determined from Late Jurassic (Oxfordian-Tithonian) belemnites and inoceramid bivalves from two Deep Sea Drilling Project (DSDP) sites located on the Falkland Plateau. Mean belemnite delta18O values, derived from well preserved skeletal material, were -1.29? from DSDP site 330 and -1.45? from DSDP site 511. Assuming a seawater SMOW value of -1.0?, mean palaeotemperatures calculated from the oxygen isotopic composition are 17.2°C and 17.9°C, respectively. The inoceramid bivalves yielded much lighter delta18O values (mean -3.58?). Petrographic and geochemical evidence points to the inoceramid bivalves being altered by diagenesis which accordingly accounts for the observed differences in isotopic values. "Vital effects" or the importation of belemnites or inocerarnids from another area, are considered not to account for the observed isotopic trends. The palaeotemperatures interpreted from the belemnites are significantly warmer than other recent estimates of Late Jurassic temperature (from oxygen isotope studies and climate model predictions) from similar southern palaeolatitudes. We suspect our apparent warmer temperatures are because of a combination of increased freshwater runoff depleting surface waters with respect to delta18O and related to the semi-enclosed nature of the depositional basin retaining warmth, relative to the open ocean of similar latitudes.
(Figure 5) Bivariate scatter plot of magnetic properties from riverine sediments of Tauranga Harbour