76 resultados para Early life stress
Resumo:
Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH < 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.
Resumo:
The world's oceans are warming and becoming more acidic. Both stressors, singly or in combination, impact marine species, and ensuing effects might be particularly serious for early life stages. To date most studies have focused on ocean acidification (OA) effects in fully marine environments, while little attention has been devoted to more variable coastal ecosystems, such as the Western Baltic Sea. Since natural spatial and temporal variability of environmental conditions such as salinity, temperature or pCO2 impose more complex stresses upon organisms inhabiting these habitats, species can be expected to be more tolerant to OA (or warming) than fully marine taxa. We present data on the variability of salinity, temperature and pH within the Kiel Fjord and on the responses of the barnacle Amphibalanus improvisus from this habitat to simulated warming and OA during its early development. Nauplii and cyprids were exposed to different temperature (12, 20 and 27°C) and pCO2 (nominally 400, 1250 and 3250 µatm) treatments for 8 and 4 weeks, respectively. Survival, larval duration and settlement success were monitored. Warming affected larval responses more strongly than OA. Increased temperatures favored survival and development of nauplii but decreased survival of cyprids. OA had no effect upon survival of nauplii but enhanced their development at low (12°C) and high (27°C) temperatures. In contrast, at the intermediate temperature (20°C), nauplii were not affected even by 3250 µatm pCO2. None of the treatments significantly affected settlement success of cyprids. These experiments show a remarkable tolerance of A. improvisus larvae to 1250 µatm pCO2, the level of OA predicted for the end of the century.
Resumo:
Absorption of anthropogenic carbon dioxide by the world's oceans is causing mankind's 'other CO2 problem', ocean acidification. Although this process will challenge marine organisms that synthesize calcareous exoskeletons or shells, it is unclear how it will affect internally calcifying organisms, such as marine fish. Adult fish tolerate short-term exposures to CO2 levels that exceed those predicted for the next 300 years (~2,000 ppm), but potential effects of increased CO2 on growth and survival during the early life stages of fish remain poorly understood. Here we show that the exposure of early life stages of a common estuarine fish (Menidia beryllina) to CO2 concentrations expected in the world's oceans later this century caused severely reduced survival and growth rates. When compared with present-day CO2 levels (~400 ppm), exposure of M. beryllina embryos to ~1,000 ppm until one week post-hatch reduced average survival and length by 74% and 18%, respectively. The egg stage was significantly more vulnerable to high CO2-induced mortality than the post-hatch larval stage. These findings challenge the belief that ocean acidification will not affect fish populations, because even small changes in early life survival can generate large fluctuations in adult-fish abundance.
Resumo:
Due to atmospheric accumulation of anthropogenic CO2 the partial pressure of carbon dioxide (pCO2) in surface seawater increases and the pH decreases. This process known as ocean acidification might have severe effects on marine organisms and ecosystems. The present study addresses the effect of ocean acidification on early developmental stages, the most sensitive stages in life history, of the Atlantic herring (Clupea harengus L.). Eggs of the Atlantic herring were fertilized and incubated in artificially acidified seawater (pCO2 1260, 1859, 2626, 2903, 4635 µatm) and a control treatment (pCO2 480 µatm) until the main hatch of herring larvae occurred. The development of the embryos was monitored daily and newly hatched larvae were sampled to analyze their morphometrics, and their condition by measuring the RNA/DNA ratios. Elevated pCO2 neither affected the embryogenesis nor the hatch rate. Furthermore the results showed no linear relationship betweenpCO2 and total length, dry weight, yolk sac area and otolith area of the newly hatched larvae. For pCO2 and RNA/DNA ratio, however, a significant negative linear relationship was found. The RNA concentration at hatching was reduced at higher pCO2 levels, which could lead to a decreased protein biosynthesis. The results indicate that an increased pCO2 can affect the metabolism of herring embryos negatively. Accordingly, further somatic growth of the larvae could be reduced. This can have consequences for the larval fish, since smaller and slow growing individuals have a lower survival potential due to lower feeding success and increased predation mortality. The regulatory mechanisms necessary to compensate for effects of hypercapnia could therefore lead to lower larval survival. Since the recruitment of fish seems to be determined during the early life stages, future research on the factors influencing these stages are of great importance in fisheries science.
Resumo:
Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.
Resumo:
Surprisingly little is known about potential effects of ocean acidification on krill of the Northern Hemisphere as ecologically very important food web component. Sub-adult individuals of the northern Atlantic krill species Nyctiphanes couchii (caught at Austevoll near Bergen, Norway, in January 2013) were exposed in the laboratory to four different levels of pCO2 (430, 800, 1,100, and 1,700 µatm) for 5 weeks in order to assess potential changes in a set of biological response variables. Survival decreased and the frequency of moulting-related deaths increased with increasing pCO2. Survival was considerably reduced at relatively high pCO2 of 1,700 µatm and tended to be negatively affected at 1,100 µatm pCO2. However, the experimental results show no significant effects of pCO2 on inter-moult period and growth at pCO2 levels below 1,100 µatm. No differences in length measurements of the carapace and uropod were observed across pCO2 levels, indicating no effect of changing carbonate chemistry on the morphology of those calciferous parts of the exoskeleton. The results suggest that sub-adult N. couchii may not suffer dramatically from predicted near-future changes in pCO2. However, potential detrimental effects on the moulting process and associated higher mortality at 1,100 µatm pCO2 cannot be excluded. Further experiments are needed in order to investigate whether early life stages of N. couchii show a different sensitivity to elevated sea water pCO2 and whether those results are transferable to other krill species of the Northern Hemisphere.
Resumo:
Early life stages of marine crustaceans respond sensitively to elevated seawater PCO2. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated seawater PCO2 on oxygen consumption, dry weight, elemental composition, median developmental time (MDT) and mortality in zoea I larvae of the spider crab Hyas araneus (Svalbard 79°N/11°E; collection, May 2009; hatch, December 2009). At the time of moulting, oxygen consumption rate had reached a steady state level under control conditions. In contrast, elevated seawater PCO2 caused the metabolic rate to rise continuously leading to a maximum 1.5-fold increase beyond control level a few days before moulting into the second stage (zoea II), followed by a pronounced decrease. Dry weight of larvae reared under high CO2 conditions was lower than in control larvae at the beginning of the moult cycle, yet this difference had disappeared at the time of moulting. MDT of zoea I varied between 45 ± 1 days under control conditions and 42 ± 2 days under the highest seawater CO2 concentration. The present study indicates that larval development under elevated seawater PCO2 levels results in higher metabolic costs during premoulting events in zoea I. However, H. araneus zoea I larvae seem to be able to compensate for higher metabolic costs as larval MDT and survival was not affected by elevated PCO2 levels.
Resumo:
Ocean acidification may negatively impact the early life stages of some marine invertebrates including corals. Although reduced growth of juvenile corals in acidified seawater has been reported, coral larvae have been reported to demonstrate some level of tolerance to reduced pH. We hypothesize that the observed tolerance of coral larvae to low pH may be partly explained by reduced metabolic rates in acidified seawater because both calcifying and non-calcifying marine invertebrates could show metabolic depression under reduced pH in order to enhance their survival. In this study, after 3-d and 7-d exposure to three different pH levels (8.0, 7.6, and 7.3), we found that the oxygen consumption of Acropora digitifera larvae tended to be suppressed with reduced pH, although a statistically significant difference was not observed between pH conditions. Larval metamorphosis was also observed, confirming that successful recruitment is impaired when metamorphosis is disrupted, despite larval survival. Results also showed that the metamorphosis rate significantly decreased under acidified seawater conditions after both short (2 h) and long (7 d) term exposure. These results imply that acidified seawater impacts larval physiology, suggesting that suppressed metabolism and metamorphosis may alter the dispersal potential of larvae and subsequently reduce the resilience of coral communities in the near future as the ocean pH decreases.