58 resultados para EDC


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stable carbon isotopic signature of carbon dioxide (d13CO2) measured in the air occlusions of polar ice provides important constraints on the carbon cycle in past climates. In order to exploit this information for previous glacial periods, one must use deep, clathrated ice, where the occluded air is preserved not in bubbles but in the form of air hydrates. Therefore, it must be established whether the original atmospheric d13CO2 signature can be reconstructed from clathrated ice. We present a comparative study using coeval bubbly ice from Berkner Island and ice from the bubble-clathrate transformation zone (BCTZ) of EPICA Dome C (EDC). In the EDC samples the gas is partitioned into clathrates and remaining bubbles as shown by erroneously low and scattered CO2 concentration values, presenting a worst-case test for d13CO2 reconstructions. Even so, the reconstructed atmospheric d13CO2 values show only slightly larger scatter. The difference to data from coeval bubbly ice is statistically significant. However, the 0.16 per mil magnitude of the offset is small for practical purposes, especially in light of uncertainty from non-uniform corrections for diffusion related fractionation that could contribute to the discrepancy. Our results are promising for palaeo-atmospheric studies of d13CO2 using a ball mill dry extraction technique below the BCTZ of ice cores, where gas is not subject to fractionation into microfractures and between clathrate and bubble reservoirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dust can affect the radiative balance of the atmosphere by absorbing or reflecting incoming solar radiation and it can be a source of micronutrients, such as iron, to the ocean. It has been suggested that production, transport, and deposition of dust is influenced by climatic changes on glacial-interglacial timescales. Here we present a high-resolution aeolian dust record from the EPICA Dome C ice core in East Antarctica, which provides an undisturbed climate sequence over the last eight climatic cycles. We find that there is a significant correlation between dust flux and temperature records during glacial periods that is absent during interglacial periods. Our data suggests that dust flux is increasingly correlated with Antarctic temperature as climate becomes colder. We interpret this as progressive coupling of Antarctic and lower latitudes climate. Limited changes in glacial-interglacial atmospheric transport time Mahowald et al. (1999, doi:10.1029/1999JD900084), Jouzel et al. (2007, doi:10.1126/science.1141038), and Werner et al. (2002, doi:10.1029/2002JD002365) suggest that the sources and lifetime of dust are the major factors controlling the high glacial dust input. We propose that the observed ~25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer atmospheric dust particle life-time in the upper troposphere resulting from a reduced hydrological cycle during the ice ages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to not, vert, similar ~103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng/l range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng/l while between 0.5 and 5 ng/l accuracy and precision are element dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (d13Catm ), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of d13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 years BP). The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4 permil shift to heavier values between the mean d13Catm level in the Penultimate (~ 140 000 years BP) and Last Glacial Maximum (~ 22 000 years BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 years, but with different phasing and magnitudes. Furthermore, a 5000 years lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS 5.5 (120 000 years BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The EPICA (European Project for Ice Coring in Antarctica) Dome C drilling in East Antarctica has now been completed to a depth of 3260 m, at only a few meters above bedrock. Here we present the new EDC3 chronology, which is based on the use of 1) a snow accumulation and mechanical flow model, and 2) a set of independent age markers along the core. These are obtained by pattern matching of recorded parameters to either absolutely dated paleoclimatic records, or to insolation variations. We show that this new time scale is in excellent agreement with the Dome Fuji and Vostok ice core time scales back to 100 kyr within 1 kyr. Discrepancies larger than 3 kyr arise during MIS 5.4, 5.5 and 6, which points to anomalies in either snow accumulation or mechanical flow during these time periods. We estimate that EDC3 gives accurate event durations within 20% (2 sigma) back to MIS11 and accurate absolute ages with a maximum uncertainty of 6 kyr back to 800 kyr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, ~800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature interpretation. We assessed the general correspondence between Dansgaard-Oeschger events and their smoothed Antarctic counterparts for this Dome C record, which reveals the presence of such features with similar amplitudes during previous glacial periods. We suggest that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records. Temperature was estimated after correction for sea-water isotopic composition (Bintanja et al, 2005) and for ice sheet elevation (Parrenin et al, 2007) on EDC3 age scale (Parrenin et al, 2007).