188 resultados para Curie-Temperature
Resumo:
Seventeen samples from pillow or massive "zero age" fresh basalts from ODP Legs 106 and 109 were studied in order to examine their magnetic properties and oxidation degree. Thermomagnetic analyses of studied samples show Curie temperatures from 127°C to 220°C with reversible heating and cooling curves. Hysteresis parameters indicate the contribution of large Pseudo-Single Domain (PSD) grain of titanomagnetites with saturation magnetization between 0.4 and 0.7 emu/g which is almost twice that those of other recent mid-oceanic dredged basalts (e.g., FAMOUS and CYAMEX-RISE). The large grain sizes and higher magnetic mineral concentration may suggest a slower cooling of these basalts compared to those previously studied. Electron microprobe analyses of titanomagnetite grains combined with Curie point determinations give z = 0.3 for the degree of low temperature oxidation, which is close to the other values reported for low temperature oxidation of mid-oceanic ridge basalts.
Resumo:
The titanomagnetite oxidation state of "zero age" ocean floor basalts was investigated. For this purpose the oxidation parameter, z, of Hole 648B basalts was determined by SEM observation of "shrinkage cracks" in individual titanomagnetite grains and by Curie temperature measurements. A mean z-value of 0.1 has been deduced for the Hole 648B basalts. Assuming a linear relationship between titanomagnetite low-temperature oxidation state and age of the oceanic basalt, an age of 0.7 m.y. is deduced for Hole 648B.
Resumo:
More than 60 basalt samples from two Deep Sea Drilling Project holes on the Costa Rica Rift were studied for magnetic properties and were found to have no properties significantly different from other DSDP basalts. Opaque mineralogical and thermomagnetic properties of these samples, however, to some extent show differences from normal submarine basalts; a new type of thermomagnetic curve and wide range of chemical compositions were recognized. Oxidized samples possibly containing incipient ilmenite exsolution lamellae were reduced and re-equilibrated during heating. The Curie temperatures of the re-equilibrated titanomagnetites are interpreted to be those of the original crystallized phase before oxidation.
Resumo:
A combined study of magnetic parameters of basalt and andesite samples has been carried out in the framework of geological investigations of the Franz Josef Land. This study has included determination of coercivity, saturation magnetization, Curie points, natural remanent magnetization (NRM), and magnetic susceptibility as well as examination of ferromagnetic minerals with a microscope. Data on chemical composition of the rocks have been obtained for all the samples, and radiological ages have been determined for the majority of the rocks. Thermomagnetic curves of the samples have been subdivided into four types depending on composition of ferromagnetic NRM carriers. Data showing multiple changes in the predominant composition of the igneous rocks have been obtained. Each stage of magmatism is characterized by a specific type of the ferromagnetic component in the rocks and, therefore, magnetomineralogical investigations can be used for differentiation and correlation of the igneous rocks.
Resumo:
The basalts in Holes 519A, 522B, and 524 were studied for intensity of natural remanent magnetization, magnetic hysteresis, magnetic susceptibility, stability of isothermal remanence, and thermomagnetic behavior. Some of these properties are sensitive to both the composition and the microstructure of the magnetic minerals, others to composition only. Thus it is possible to separate the two effects and to trace the variation of effective magnetic grain size and degree of alteration within a lithologic unit or over a yet larger distance or time interval. The flow in Hole 519A is highly maghemitized at the top, the degree of maghemitization decreasing with depth in the flow. Effective grain size increases with increasing depth. Electron microprobe analysis of the titanomaghemite grains in these samples provides no support for the leaching out of iron during alteration. The pillows and flows in Hole 522B are distributed among a number of cooling units, and no systematic downhole variations are apparent. The inferred magneto-petrology is consistent with the cooling and alteration history that might be expected within the units. The upper and lower sills in Hole 524 are more uniform and have a larger concentration of well-developed magnetic mineral grains than the pillows and flows in Holes 519A and 522B. Maghemitization appears to have developed from the boundaries of the sills that are in contact with the sediments between the sills.
Resumo:
The Curie temperature and thermomagnetic behavior of wholerock samples were measured in basalts recovered from Sites 442, 443, and 444 of DSDP Leg 58 in the Shikoku Basin, and from Site 446 in the Daito Basin, north Philippine Sea. Chemical composition and microscopic features of opaque oxides in the same samples were also investigated. Degree and mode of oxidation of titanomagnetite vary irrespective of site, lithology, or magnetic polarity, and no systematic correlation has been found between any two of these characteristics. Magnetic properties are systematically different between massive flows recovered at Hole 444A (Shikoku Basin) and Hole 446A (Daito Basin), although the controlling factor is unknown.
Resumo:
Ocean Drilling Program (ODP) Hole 735B was drilled to a depth of 1.5 km in a tectonic window of gabbroic lower oceanic crust created at the Southwest Indian Ridge. The gabbros have a very stable natural remanent magnetization (NRM) of reversed polarity with most unblocking temperatures slightly below the Curie temperature of magnetite. The NRM includes a drilling-induced overprint but its intensity decays strongly towards the interior of the drill core. The demagnetization data yield no or only a very small secondary magnetization component acquired during the present Brunhes chron or an earlier normal chron, suggesting cooling through most of the blocking temperature range during chron C5r and a strong resistance against the acquisition of thermoviscous magnetization. A novel furnace has been designed to measure magnetizations and their time dependences at high temperatures (up to 580 deg C) inside a commercial SQUID magnetometer. Magnetic viscosity experiments have been conducted on the gabbros at temperatures up to 550 deg C to determine the time and temperature stability of remanent magnetization. Viscosities are generally small and increase little with temperature below the main blocking temperature, where the increase becomes almost an order of magnitude. Extrapolations to geological times infer viscous acquisitions that would be 5-25% of a thermoremanence in 100 kyr and at temperatures of 200-500 deg C. At ocean bottom temperature the predicted magnetization of one sample acquired in the present Brunhes chron should be 10% of the NRM. However, this is not recognized during NRM demagnetization and partial thermoremanent magnetization (pTRM) acquisitions at 250 deg C are also much smaller than predicted. It thus appears that the NRMs are generally magnetically harder than magnetizations acquired after heating to 570 deg C in the laboratory. Susceptibility changes during heating are small (<5%) indicating a seemingly stable magneto-mineralogy, but conspicuous minima occur after heating to 520 deg C. Also, quasi paleointensity experiments reveal characteristic patterns in the NRM/pTRM ratios and also large increases in pTRM capacity after heating to 570 deg C. Moreover, anhysteretic remanent magnetization acquisition in the low field range (<=10 mT) is strongly enhanced after heating by factors up to three. The alteration of the magneto-mineralogy is interpreted to result from the annealing of defects in magnetite that originate from tectonically induced strain. The oceanic gabbros of Hole 735B are thus ideal source layer material for marine magnetic anomalies, and secondary thermoviscous acquisition, as a possible cause for anomalous skewness, is essentially absent.
Resumo:
The magnetic properties of 11 samples from Site 670 of Leg 109, 3 harzburgites and 8 highly serpentinized peridotites, have been studied. Reflected light microscopy and Curie temperatures confirm that magnetite is the dominant magnetic mineral in all samples. However, both rock types show different magnetic behavior. Susceptibility, saturation magnetization, and NRM are higher for the serpentinites, because of the higher magnetite content. The hysteresis parameters indicate magnetite particles with pseudosingle domain structure for both rock types. For the remarkable anisotropy of the magnetic susceptibility no definite explanation could be found, because of the complex texture of the samples. In both rock types the presence of maghemite, a product of low temperature oxidation of magnetite, has been indicated by reflected light microscopy and by thermomagnetic analysis. As the maghemite converts to hematite at temperatures above 350°C, the temperature during the serpentinization was below this value assuming that the maghemitization took place at the same time.
Resumo:
The magnetic properties of 56 samples of basalt from DSDP Leg 82 were studied in order to examine regional variations as well as the general question of the origin or remanence. Magnetization was carried, for the most part, by typical low temperature oxidized titanomagnetites, although two samples did show anomalous thermomagnetic curves. The natural remanence is distinctly different from an anhysteretic remanent magnetization and is hypothesized (by inference) to also be different from a thermoremanent magnetization (TRM) also. This suggests that alteration not only reduces the initial TRM but also changes it to chemical remanent magnetization with a significantly different magnetic character. An examination of thermomagnetic data tentatively suggests that the ulvospinel content of the titanomagnetites may be more variable than is commonly assumed. With the exception of a slight increase in saturation magnetization with decreasing latitude, no significant regional variations were evident.