453 resultados para Cuhls, Kerstin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, not least because they lack or misrepresent physical processes that are specific to high latitudes. The Arctic boundary layer in winter has been observed to be in either a radiatively clear or cloudy state: The radiatively clear state is characterized by strong surface radiative cooling leading to the build-up of surface-based temperature inversions, whereas the cloudy state occurs when cloud liquid water is present in the atmospheric column, allowing little or no surface radiative cooling and leading to weaker and typically elevated temperature inversions. Many large-scale models have been shown to lack the cloudy state, and some do substantially underestimate stability in the clear state. We here present results from the first Lagrangian ARCtic air FORMation experiment (Larcform 1), a GASS (Global atmospheric system studies) single-column model intercomparison which reproduces these biases of large-scale models in an idealised setup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment in both, water column and sediment, supports our ability to locate future nodule deposits and evaluates the potential ecological and environmental effects of future deep-sea mining. For these purposes we evaluated the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180 - 300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labelled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cores HU82-034-057 and HU84-035-008, Resolution Basin, SE Baffin Shelf, contain 200 and 450 cm, respectively, of sediment that spans the Younger Dryas chron. In both cores the interval is bracketed by 14C dates on foraminifera or molluscs. These sites were close to the margin of the late Wisconsin (Foxe) ice sheet as it flowed toward the Labrador Sea. Prior to 11 ka, both cores record moderate to high accumulations of foraminifera, relatively high del 18O values in planktonic foraminifera, and low values of detrital carbonate. The diatom and percent opal records imply occasional seasonally open water conditions. During part of the Younger Dryas chron both the diatom and opal analyses imply a shutoff of biogenic silica production, suggesting surface water conditions affected by increased sea ice and/or reduced nutrients. In addition, the Younger Dryas interval is marked by an increase in coarse sand and detrital carbonate, a decrease in total organic carbon and foraminifera, and high rates of sediment accumulation. The inferred environment during the Younger Dryas is ice-proximal. In HU82-034-057, the foraminifera and other data suggest a change in conditions during the middle part of the Younger Dryas chron.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geochemical and rock magnetic investigations of sediments from three sites on the continental margin off Argentina and Uruguay were carried out to study diagenetic alteration of iron minerals driven by anaerobic oxidation of methane (AOM). The western Argentine Basin represents a suitable sedimentary environment to study nonsteady-state processes because it is characterized by highly dynamic depositional conditions. Mineralogic and bulk solid phase data document that the sediment mainly consists of terrigenous material with high contents of iron minerals. As a typical feature of these deposits, distinct minima in magnetic susceptibility (k) are observed. Pore water data reveal that these minima in susceptibility coincide with the current depth of the sulfate/methane transition (SMT) where HS- is generated by the process of AOM. The released HS- reacts with the abundant iron (oxyhydr)oxides resulting in the precipitation of iron sulfides accompanied by a nearly complete loss of magnetic susceptibility. Modeling of geochemical data suggest that the magnetic record in this area is highly influenced by a drastic change in mean sedimentation rate (SR) which occurred during the Pleistocene/Holocene transition. We assume that the strong decrease in mean SR encountered during this glacial/interglacial transition induced a fixation of the SMT at a specific depth. The stagnation has obviously enhanced diagenetic dissolution of iron (oxyhydr)oxides within a distinct sediment interval. This assumption was further substantiated by numerical modeling in which the mean SR was decreased from 100 cm/kyr during glacial times to 5 cm/kyr in the Holocene and the methane flux from below was fixed to a constant value. To obtain the observed geochemical and magnetic patterns, the SMT must remain at a fixed position for ~9000 yrs. This calculated value closely correlates to the timing of the Pleistocene/Holocene transition. The results of the model show additionally that a constant high mean SR would cause a concave-up profile of pore water sulfate under steady state conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment cores retrieved in the Benguela coastal upwelling system off Namibia show very distinct enrichments of solid phase barium at the sulfate/methane transition (SMT). These barium peaks represent diagenetic barite (BaSO4) fronts which form by the reaction of upwardly diffusing barium with interstitial sulfate. Calculated times needed to produce these barium enrichments indicate a formation time of about 14,000 yr. Barium spikes a few meters below the SMT were observed at one of the investigated sites (GeoB 8455). Although this sulfate-depleted zone is undersaturated with respect to barite, the dominant mineral phase of these buried barium enrichments was identified as barite by scanning electron microscopy (SEM). This is the first study which reports the occurrence/preservation of pronounced barite enrichments in sulfate-depleted sediments buried a few meters below the SMT. At site GeoB 8455 high concentrations of dissolved barium in pore water as well as barium in the solid phase were observed. Modeling the measured barium concentrations at site GeoB 8455 applying the numerical model CoTReM reveals that the dissolution rate of barite directly below the SMT is about one order of magnitude higher than at the barium enrichments deeper in the sediment core. This indicates that the dissolution of barite at these deeper buried fronts must be retarded. Thus, the occurrence of the enrichments in solid phase barium at site GeoB 8455 could be explained by decreased dissolution rates of barite due to the changes in the concentration of barite in the sediment, as well as changes in the saturation state of fluids. Furthermore, the alteration of barite into witherite (BaCO3) via the transient phase barium sulfide could lead to the preservation of a former barite front as BaCO3. The calculations and modeling indicate that a relocation of the barite front to a shallower depth occurred between the last glacial maxium (LGM) and the Pleistocene/Holocene transition. We suggest that an upward shift of the SMT occurred at that time, most likely as a result of an increase in the methanogenesis rates due to the burial of high amounts of organic matter below the SMT.