35 resultados para Crustacea - Geographical distribution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial data set delineates areas with similar environmental properties regarding soil, terrain morphology, climate and affiliation to the same administrative unit (NUTS3 or comparable units in size) at a minimum pixel size of 1km2. The scope of developing this data set is to provide a link between spatial environmental information (e.g. soil properties) and statistical data (e.g. crop distribution) available at administrative level. Impact assessment of agricultural management on emissions of pollutants or radiative active gases, or analysis regarding the influence of agricultural management on the supply of ecosystem services, require the proper spatial coincidence of the driving factors. The HSU data set provides e.g. the link between the agro-economic model CAPRI and biophysical assessment of environmental impacts (updating previously spatial units, Leip et al. 2008), for the analysis of policy scenarios. Recently, a statistical model to disaggregate crop information available from regional statistics to the HSU has been developed (Lamboni et al. 2016). The HSU data set consists of the spatial layers provided in vector and raster format as well as attribute tables with information on the properties of the HSU. All input data for the delineation the HSU is publicly available. For some parameters the attribute tables provide the link between the HSU data set and e.g. the soil map(s) rather than the data itself. The HSU data set is closely linked the USCIE data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general study of structure, biomass estimates and dynamics on the macrofauna was carried out in August 1975 and March 1976 during PREFLEX (1975) and FLEX (1976), the Fladen Ground Experiment. On the basis of these data an attempt was made to estimate macrobenthic production expressed as minimum production (MP). The macrobenthic production is discussed together with meiobenthic annual production and with indirectly estimated microbenthic production in relation to an energy input from the water column of about 25 g C m**-2 year**-1. From the production estimates of the three benthic components a rough energy budget is proposed. Sampling was performed at five stations for endofauna twice during the time of investigation and for epifauna once. At each station two replicate box core samples (30 X 20 cm) were taken for endofauna. Epifauna was sampled with an Agassiz trawl once at each station. The total numbers of endofauna increased from station 1 to 5. This was valid as well for August 1975 (4,233-12,166 individuals per m**2 and 10 cm sediment depth) as for March 1976 (1,008-2,925 individuals). The polychaetes were the dominant organisms with a share of 33 to 62 %. The densities for the endofauna decreased from August 1975 to March 1976 by a mean factor of 2.8. Abundances of epifauna amounted to values between 11 and 102 individuals per 1000 m**2. The biomass dry weights (DWT) for macrobenthic endofauna varied between 0.97 g DWT m**-2 and 6.42 g DWT m**-2 in August 1975 and between 0.27 g DWT m**-2 and 2.64 g DWT m**-2 in March 1976. The mean amounted to 1.74 g DWT m**-2. Dry weights of epifauna biomass gave values between 4.9 and 83.1 g DWT * 1000 m**-2. The minimum production for the total macro-endofauna at Fladen Ground amounted to 1.43 g DWT m**-2 yr**-1 or 0.82 g C m**-2 yr**-1. This resulted in a minimum turnover rate (P/B) of 0.8. The share produced by the polychaetes amounted to 1.06g DWT m**-2 yr**-1 or 74 %.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a data set of 738 planktonic foraminiferal species counts from sediment surface samples of the eastern North Atlantic and the South Atlantic between 87°N and 40°S, 35°E and 60°W including published Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) data. These species counts are linked to Levitus's [1982] modern water temperature data for the four caloric seasons, four depth ranges (0, 30, 50, and 75 m), and the combined means of those depth ranges. The relation between planktonic foraminiferal assemblages and sea surface temperature (SST) data is estimated using the newly developed SIMMAX technique, which is an acronym for a modern analog technique (MAT) with a similarity index, based on (1) the scalar product of the normalized faunal percentages and (2) a weighting procedure of the modern analog's SSTs according to the inverse geographical distances of the most similar samples. Compared to the classical CLIMAP transfer technique and conventional MAT techniques, SIMMAX provides a more confident reconstruction of paleo-SSTs (correlation coefficient is 0.994 for the caloric winter and 0.993 for caloric summer). The standard deviation of the residuals is 0.90°C for caloric winter and 0.96°C for caloric summer at 0-m water depth. The SST estimates reach optimum stability (standard deviation of the residuals is 0.88°C) at the average 0- to 75-m water depth. Our extensive database provides SST estimates over a range of -1.4 to 27.2°C for caloric winter and 0.4 to 28.6°C for caloric summer, allowing SST estimates which are especially valuable for the high-latitude Atlantic during glacial times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, the ecology and feeding habits of euphausiids are described. The samples were taken at the time of the NE-monsoon (1964/65) by R. V. "Meteor" in the Arabian Sea and adjacent waters. 24 species were determined. According to distribution of the species, the following marine areas can be distinguished: Arabian Sea: 24 species, dominant are Euphausia diomedeae, E. tenera, E. distinguenda, Stylocheiron carinatum. Gulf of Aden: 10 species, dominant are Euphausia diomedeae, E. distinguenda. Red Sea: 6 species, dominant are Euphausia diomedeae, E. distinguenda. Gulf of Oman : 5 Species, dominant are Euphausia distinguenda, Pseudeupbaufia latifrons. Persian Gulf: 1 species - Pseudeuphausia latifrons. The total number of euphausiids indicate the biomass of this group. High densities of euphausiids (200-299 and > 300 individuals/100 m**3) occur in the innermost part of the Gulf cf Aden, in the area south of the equator near the African east coast, near Karachi (Indian west coast) and in the Persian Gulf. Comparison with data relating to production biology confirms that these are eutrophic zones which coincide with areas in which upwelling occurs at the time of the NE-monsoon. The central part of the Arabian Sea differs from adjacent waters by virtue of less dense euphausiid populations (> 199 individuals/100 m**3). Measurements relating to production biology demonstrate a relatively low concentration of primary food sources. Food material was ascertained by analysis of stomach content. The following omnivorous species were examined: Euphausia diomedeae, E. distinguenda, E. tenera, Pseudeuphausia latifrons and Thysanopoda tricuspidata. Apart from crustacean remains large numbers of Foraminifera, Radiolaria, tintinnids, dinoflagellates were found in the stomachs. Quantitatively crustaceans form the most important item in the diet. Food selection on the basis of size and form appears to be restricted to certain genera of tintinnids. The genera Stylocheiron and Nematoscelis are predators. Only crustacean remains were found in the stomachs of Stylocheiron abbreviatum, whereas Radiolaria, Foraminifera and tintinnids occurred to some extent in Nematasceli sp. Different euphausiids in the food chain in the Arabian Sea. In omnivorous species the position is variable, since they not only feed by filtering autotrophic and heterotrophic Protista, but also by predation on zooplankton. Carnivorous species without filtering apparatus feed exclusively on zooplankton of the size of copepods. Only these species are well established as occupying a higher position in the food chain. The parasitic protozoan Tbalassomyces fagei was found on Euphausia diomedeae, E. fenera, E. distinguenda and E. sanzoi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general study of structure, biomass, and dynamic estimates on meiofauna was carried out during PREFLEX (1975) and FLEX (1976), in 117- 141 m water depth. On the basis of these data an attempt was made to estimate meiofauna production, and this is discussed in relation to the energy input from the spring phytoplankton bloom. Sampling was performed at five stations, but only the stations 1, 4, and 5 were covered by a complete series from August 1975 to July 1976. At each station, from four replicate box core samples, two were withdrawn to study the abundance, distribution, and biomass of meiofauna, the content of chloroplastic pigment equivalents (CPE), and chemical and grain size analyses. At all stations grain size fell in the range of fine sand having median diameters (MD) of < 125 µm. From station 1 to 5 an increase in MD was observed. Highest values of CPE (7.81 µg m l**-1) and organic matter (4.7 %) were obtained in June and July (1976)/ August (1975), respectively. Meiofauna abundance was fairly uniform at all stations examined. Station 1 displayed maximal numbers during the whole investigation period. The abundance per 100 cm**2 varied between 15,550 and 34,900 organisms. All meiofauna studied both in total and as separate taxa showed annual cycles of abundance. Low abundance values were recorded during early summer, and maximum values during winter. High numbers of Foraminifera were obtained for August 1975 (9,460 per 100 cm**2) and July 1976 (9,710 per 100 cm**2). From December to June the values decreased from 3,280 to 1,030 per 100 cm**2. At station 1 maximum values of meiofauna biomass were recorded ranging from 1.5 to 2.7 g DWT m**-2. The mean meiofauna dry weight amounted to 2.1 g DWT m**-2. Based on minimum production, the P/B ratio for the area of station 1 might have a mean of 1.4. Taking into consideration generation times we believe that a turnover ratio of 2 is a conservative value for the Fladen Ground meiofauna. The annual production would amount to 4.2 g DWT m**-2 yr**-1. This is 27.5 % of the energy supply during the spring phytoplankton bloom, which is channelled into the meiofauna. The hypothesis is put forward that the energetic strategy of deep offshore meiofauna differs distinctively from that of shallow inshore meiofauna. While the shallow inshore meiofauna show a relatively fast response to organic matter input, the deep offshore meiofauna reacts much more slowly, the food energy consumption seems to be spread out over a longer period.