42 resultados para Classes (Groups of Students)
Resumo:
Three dives of the Mir manned submersibles with plankton counts and two vertical plankton hauls with a BR net were carried out above the Lost City (Atlantis underwater massif) and the Broken Spur hydrothermal fields during cruise 50 of R/V Akademik Mstislav Keldysh. Above the Atlantis seamount no significant increase in plankton concentration was found. Above the Lost City field horizontal heterogeneity of plankton distribution in the near-bottom layer and in overlying water layers was shown. Near-bottom aggregations of euphausiids and amphipods previously reported by other scientists seem to be related to attraction of these animals by the submersible's headlights rather than represent a natural phenomenon.
Resumo:
The pulsed decline and eventual extinction of 51 species of elongate, cylindrical deep-sea benthic foraminifera (Stilostomellidae, Pleurostomellidae, and some Nodosariidae) occurred at intermediate water depths (1145-2168 m, Sites 980 and 982) in the northern North Atlantic during the mid-Pleistocene transition (MPT, 1.2-0.6 Ma). In the early Pleistocene, prior to their disappearance, these species comprised up to 20% of the total abundance of the benthic foraminiferal assemblage at 2168 m, but up to only 2% at 1145 m. The MPT extinction of 51 species represents ?20% of the total benthic foraminiferal diversity at bathyal depths in the North Atlantic (excluding the myriad of small unilocular forms). The extinction rate during the MPT was approximately 10 species per 0.1 myr, being one or two orders of magnitude greater than normal background turnover rates of deep-sea benthic foraminifera. Comparison of the precise timings of declines and disappearances (= highest occurrences) of each species shows that they were often diachronous between the two depths. The last of these species to disappear in the North Atlantic was Pleurostomella alternans at ~0.679 and ~0.694 Ma in Sites 980 and 982, respectively, which is in good agreement with the previously documented global "Stilostomella extinction" datum within the period 0.7-0.58 Ma. Comparison with similar studies in intermediate depth waters in the Southwest Pacific Gateway indicates that ~61% of the extinct species were common to both regions, and that although the pattern of pulsed decline was similar, the precise order and timing of the extinction of individual species were mostly different on opposite sides of the world. Previous studies have indicated that this extinct group of elongate, cylindrical foraminifera lived infaunally and had their greatest abundances in poorly ventilated, lower oxygen environments. This is supported by our study where there is a strong positive correlation (r = ~+ 0.8) between the flux of the extinction group and low-oxygen/high organic input species (such as Uvigerina, Bulimina and Bolivina) during the MPT, suggesting a close relationship with lower oxygen levels and high food supply to the sea floor. The absolute abundance, flux, and number of the extinction group of species show a progressive withdrawal pattern with major decreases occurring in cold periods with high d13C values. This might be related to increasing chemical ventilation of glacial intermediate water.
Resumo:
The continental shelf adjacent to the Río de la Plata (RdlP) exhibits extremely complex hydrographic and ecological characteristics which are of great socioeconomic importance. Since the long-term environmental variations related to the atmospheric (wind fields), hydrologic (freshwater plume), and oceanographic (currents and fronts) regimes are little known, the aim of this study is to reconstruct the changes in the terrigenous input into the inner continental shelf during the late Holocene period (associated with the RdlP sediment discharge) and to unravel the climatic forcing mechanisms behind them. To achieve this, we retrieved a 10 m long sediment core from the RdlP mud depocenter at 57 m water depth (GeoB 13813-4). The radiocarbon age control indicated an extremely high sedimentation rate of 0.8 cm per year, encompassing the past 1200 years (AD 750-2000). We used element ratios (Ti / Ca, Fe / Ca, Ti / Al, Fe / K) as regional proxies for the fluvial input signal and the variations in relative abundance of salinity-indicative diatom groups (freshwater versus marine-brackish) to assess the variability in terrigenous freshwater and sediment discharges. Ti / Ca, Fe / Ca, Ti / Al, Fe / K and the freshwater diatom group showed the lowest values between AD 850 and 1300, while the highest values occurred between AD 1300 and 1850. The variations in the sedimentary record can be attributed to the Medieval Climatic Anomaly (MCA) and the Little Ice Age (LIA), both of which had a significant impact on rainfall and wind patterns over the region. During the MCA, a weakening of the South American summer monsoon system (SAMS) and the South Atlantic Convergence Zone (SACZ), could explain the lowest element ratios (indicative of a lower terrigenous input) and a marine-dominated diatom record, both indicative of a reduced RdlP freshwater plume. In contrast, during the LIA, a strengthening of SAMS and SACZ may have led to an expansion of the RdlP river plume to the far north, as indicated by higher element ratios and a marked freshwater diatom signal. Furthermore, a possible multidecadal oscillation probably associated with Atlantic Multidecadal Oscillation (AMO) since AD 1300 reflects the variability in both the SAMS and SACZ systems.
Resumo:
Individual planktonic microfossil species, or assemblage groups of different species, are often used to, qualitatively and/or quantitatively, reconstruct past (sub)surface-water conditions of the world's oceans and seas. Until now, little information has been available on the surface sediment distribution patterns and paleoenvironmental reconstruction potential of coccolith, calcareous dinoflagellate cyst and organic-walled dinoflagellate cyst assemblages of the South and equatorial Atlantic, especially at the species level. This paper (i) summarizes the distributions of these three phytoplanktonic microfossil groups in numerous Atlantic surface sediments from 20°N-50°S and 30°E-65°W and determines their relationship with the physicochemical and trophic conditions of the overlying (sub)surface-waters, and (ii) determines the synecology of the three phytoplankton groups by carrying out statistical analyses (i.e. detrended and canonical correspondence analyses) on all groups simultaneously. Ecological relationships are additionally strengthened by statistically comparing the distribution patterns of the phytoplankton groups with those of planktonic foraminifera (Pflaumann et al. 1996; Niebler et al. 1998), as the ecological preferences of the latter are much better known. Many of the analyzed phytoplanktonic microfossil species or groups of species in the surface sediments do show restricted distributions which primarily reflect the environmental conditions of the upper water masses above them (e.g. sea-surface temperature, productivity, stratification). The acquired 'reference' data sets are large and diverse enough to allow future development of transfer functions for the reconstruction of past surface-water conditions, and show that there is still an enormous paleoenvironmental reconstruction potential concealed in many fossil coccolith and dinoflagellate cyst assemblages.