58 resultados para Circulation of seeds and propagules


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ocean Drilling Program Leg 175 recovered a unique series of stratigraphically continuous sedimentary sections along the SW African margin, an area which is presently affected by active coastal upwelling. The accumulation rates of organic and inorganic carbon are a major component of this record. Four Leg 175 sites (1082, 1084, 1085, 1087) are chosen as part of a latitudinal transect from the present northern to southern boundaries of the Benguela Current upwelling system, to decipher the Pliocene-Pleistocene history of biogenic production and its relationship with global and local changes in oceanic circulation and climate. The pattern of CaCO3 and Corg mass accumulation rates (MARs) over 0.25-Myr intervals indicates that the evolution of carbon burial is highly variable between the northern and the southern Benguela regions, as well as between sites that have similar hydrological conditions. This, as well as the presence over most locations of high-amplitude, rapid changes of carbon burial, reflect the partitioning of biogenic production and patterns of sedimentation into local compartments over the Benguela margin. The combined mapping of CaCO3 and Corg MARs at the study locations suggests four distinct evolutionary periods, which are essentially linked with major steps in global climate change: the early Pliocene, the mid-Pliocene warm event, a late Pliocene intensification of northern hemisphere glaciation and the Pleistocene. The early Pliocene spatially heterogeneous patterns of carbon burial are thought to reflect the occurrence of mass-gravitational movements over the Benguela slope which resulted in disruption of the recorded biogenic production. This was followed (3.5-3 Ma) by an episode of peak carbonate accumulation over the whole margin and, subsequently, by the onset of Benguela provincialism into a northern and a southern sedimentary regime near 2 Ma. This mid and late Pliocene evolution is interpreted as a direct response to changes in the ventilation of bottom and intermediate waters, as well as to dynamics of the subtropical gyral circulation and associated wind stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large, subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the Equatorial Undercurrent is centered at 250 m depth, deeper than in earlier observations. In December 2012 the equatorial water is transported southeastward near the shelf in the Peru-Chile Undercurrent with a mean transport of 1.6 Sv. In the oxygen minimum zone (OMZ) the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m?3 yr1 extrapolated to an annual rate and 7.7 mmol C m?3 yr?1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation, by the phase of El Niño, by seasonal changes, and by eddies and hence have to be interpreted with care. At and south of the equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part in silicate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upper branch of the Atlantic Meridional Overturning Circulation predominantly enters the Atlantic Ocean through the southeast, where the subtropical gyre is exposed to the influence of the Agulhas leakage (AL). To understand how the transfer of Indian Ocean waters via the AL affected the upper water column of this region, we have generated new proxy records of planktic foraminifera from a core on the central Walvis Ridge, on the eastern flank of the South Atlantic Gyre (SAG). We analyzed the isotopic composition of subsurface dweller Globigerinoides ruber sensu lato, and thermocline Globorotalia truncatulinoides sinistral, spanning the last five Pleistocene glacial-interglacial (G-IG) cycles. The former displays a response to obliquity, suggesting connection with high latitude forcing, and a warming tendency during each glacial termination, in response to the interhemispheric seesaw. The d18O difference between the two species, interpreted as a proxy for upper ocean stratification, reveals a remarkably regular sawtooth pattern, bound to G-IG cyclicity. It rises from interglacials until glacial terminations, with fast subsequent decrease, appearing to promptly respond to deglacial peaks of AL. Stratification, however, bears a different structure during the last cycle, being minimal at Last Glacial Maximum, and peaking at Termination I. We suggest this to be the result of the intensified glacial wind field over the SAG and/or of the invasion of the South Atlantic thermocline by Glacial North Atlantic Intermediate Waters. The d13C time series of the two species have similar G-IG pattern, whereas their difference is higher during interglacials. We propose that this may be the result of the alternation of intermediate water masses in different circulation modes, and of a regionally more efficient biological pump at times of high pCO2.