135 resultados para Canadian subarctic
Resumo:
Pliocene and Pleistocene sediments from ODP Hole 647A in the south central Labrador Sea and Hole 646B off southwest Greenland were sampled at 1.5-m intervals for studies of terrestrial and marine palynomorphs, including pollen, spores, dinocysts, and acritarchs. The dinocyst assemblages suggest that surface-water masses were cool-temperate to subarctic during most of the Pliocene and Pleistocene. The occurrence of a few warm-temperate indicators, notably Impagidinium species and Polyspaeridium zoharyi, suggests almost continuous northward advection of warm North Atlantic Drift into the Labrador Sea. A major decrease in dinocyst diversity and abundance marks the late Pliocene to early Pleistocene interval. The abundance of acritarchs in Pliocene sediments off southwest Greenland suggests high productivity, which may reflect nutrient flux from the shelf or upwelling; productivity appears to have been much lower at the central Labrador Sea site. Pollen and spore concentrations also decrease from the late Pliocene to early Pleistocene. This diminution probably reflects the impoverishment of vegetation and southward migration of the eastern Canadian tree line at the onset of climatic cooling and glaciation.
Resumo:
1. Winter temperatures differ markedly on the Canadian prairies compared with Denmark. Between 1 January 1998 and 31 December 2002, average weekly and monthly temperatures did not drop below 0 °C in the vicinity of Silkeborg, Denmark. Over this same time, weekly average temperatures near Calgary, Alberta, Canada, often dropped below -10 °C for 3-5 weeks and the average monthly temperature was below 0 °C for 2-4 months. Accordingly, winter ice conditions in shallow lakes in Canada and Denmark differed considerably. 2. To assess the implications of winter climate for lake biotic structure and function we compared a number of variables that describe the chemistry and biology of shallow Canadian and Danish lakes that had been chosen to have similar morphometries. 3. The Danish lakes had a fourfold higher ratio of chlorophyll-a: total phosphorus (TP). Zooplankton : phytoplankton carbon was related to TP and fish abundance in Danish lakes but not in Canadian lakes. There was no significant difference in the ratio log total zooplankton biomass : log TP and the Canadian lakes had a significantly higher proportion of cladocerans that were Daphnia. These differences correspond well with the fact that the Danish lakes have more abundant and diverse fish communities than the Canadian lakes. 4. Our results suggest that severe Canadian winters lead to anoxia under ice and more depauperate fish communities, and stronger zooplankton control on phytoplankton in shallow prairie lakes compared with shallow Danish lakes. If climate change leads to warmer winters and a shorter duration of ice cover, we predict that shallow Canadian prairie lakes will experience increased survivorship of planktivores and stronger control of zooplankton. This, in turn, might decrease zooplankton control on phytoplankton, leading to 'greener' lakes on the Canadian prairies.
Resumo:
Toxoplasmosis is a significant public health threat for Inuit in the Canadian Arctic. This study aimed to investigate arctic seals as a possible food-borne source of infection. Blood samples collected from 828 seals in 7 Canadian Arctic communities from 1999 to 2006 were tested for Toxoplasma gondii antibodies using a direct agglutination test. Polymerase chain reaction (PCR) was used to detect T. gondii DNA in tissues of a subsample of seals. Associations between seal age, sex, species, diet, community and year of capture, and serological test results were investigated by logistic regression. Overall seroprevalence was 10.4% (86/828). All tissues tested were negative by PCR. In ringed seals, seroprevalence was significantly higher in juveniles than in adults (odds ratio = 2.44). Overall, seroprevalence varied amongst communities (P = 0.0119) and by capture year (P = 0.0001). Our study supports the hypothesis that consumption of raw seal meat is a significant source of infection for Inuit. This work raises many questions about the mechanism of transfer of this terrestrial parasite to the marine environment, the preponderance of infection in younger animals and the natural course of infection in seals. Further studies to address these questions are essential to fully understand the health risks for Inuit communities.
Resumo:
Aerial surveys of narwhals (Monodon monoceros) were conducted in the Canadian High Arctic during the month of August from 2002 to 2004. The surveys covered the waters of Barrow Strait, Prince Regent Inlet, the Gulf of Boothia, Admiralty Inlet, Eclipse Sound, and the eastern coast of Baffin Island, using systematic sampling methods. Fiords were flown along a single transect down the middle. Near-surface population estimates increased by 1.9%-8.7% when corrected for perception bias. The estimates were further increased by a factor of approximately 3, to account for individuals not seen because they were diving when the survey plane flew over (availability bias). These corrections resulted in estimates of 27 656 (SE = 14 939) for the Prince Regent and Gulf of Boothia area, 20 225 (SE = 7285) for the Eclipse Sound area, and 10 073 (SE = 3123) for the East Baffin Island fiord area. The estimate for the Admiralty Inlet area was 5362 (SE = 2681) but is thought to be biased. Surveys could not be done in other known areas of occupation, such as the waters of the Cumberland Peninsula of East Baffin, and channels farther west of the areas surveyed (Peel Sound, Viscount Melville Sound, Smith Sound and Jones Sound, and other channels of the Canadian Arctic archipelago). Despite these probable biases and the incomplete coverage, results of these surveys show that the summering range of narwhals in the Canadian High Arctic is vast. If narwhals are philopatric to their summering areas, as they appear to be, the total population of that range could number more than 60 000 animals. The largest numbers are in the western portion of their summer range, around Somerset Island, and also in the Eclipse Sound area. However, these survey estimates have large variances due to narwhal aggregation in some parts of the surveyed areas.